It is obtained the description of normal closure of non-subnormal tightly embedded 2-subgroup A, if A is noncyclic and non-elementary group. It is determined possible parameters of strongly regular graphs, in which neighborhoods are pseudo-geometric for qeneralized quadrangles with quasi-classical parameters. It is proved that a connected graph, in which neighborhoods of vertices are strongly regular with $k=2\mu$, is either strongly regular or a Taylor graph.
Biography
Graduated from Faculty of Mathematics and Mechanics of the Ural State University in 1975 (department of algebra and geometry). Ph.D. thesis was defended in 1978. D.Sci. thesis was defended in 1986. A list of my works contains more than 140 titles. Since 1994 I have led the research seminar at IMM on algebra.
In 1985 I was awarded the Diploma of the Academy of Sciences of the USSR for yang researchers for a series of papers on tightly embedded subgroups. The Corresponding-member of the Russian Academy of Technical Sciences (1994).
Main publications:
Makhnev A. A., “Chastichnye geometrii i ikh rasshireniya”, Uspekhi mat. nauk, 54:5 (1999), 25–76
Makhnev A. A., “Psevdogeometricheskie grafy chastichnykh geometrii $pG_2(4,t)$”, Diskret. matem., 12:1 (2000), 113–134
Makhnev A. A., “O grafakh, okrestnosti vershin kotorykh silno regulyarny s $k=2\mu$”, Matem. sbornik, 191:7 (2000), 89–104
Kabanov V. V., Makhnev A. A., Paduchikh D. V., “O grafakh bez koron s regulyarnymi $\mu$-podgrafami”, Matem. zametki, 74 (2003), 396–406
Makhnev A. A., “O silnoi regulyarnosti nekotorykh reberno regulyarnykh grafov”, Izvestiya RAN, ser. matem., 68 (2004), 159–182
M. Chen, A. A. Makhnev, V. S. Klimin, “On distance regular graphs with diameter $3$ and degree $44$”, Proceedings of the Institute of Mathematics of the NAS of Belarus, 32:1 (2024), 57–63
2.
Alexander A. Makhnev, Mikhail P. Golubyatnikov, Konstantin S. Efimov, “Graphs $\Gamma$ of diameter 4 for which $\Gamma_{3,4}$ is a strongly regular graph with $\mu=4,6$”, Ural Math. J., 10:1 (2024), 76–83
3.
M. M. Isakova, A. A. Makhnev, Mingzhu Chen, “On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$”, Vladikavkaz. Mat. Zh., 26:3 (2024), 47–55
2023
4.
A. A. Makhnev, M. M. Isakova, A. A. Tokbaeva, “Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 207–210
5.
M. Chen, A. A. Makhnev, M. S. Nirova, “On Graphs in Which the Neighborhoods of Vertices Are Edge-Regular Graphs without 3-Claws”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023), 279–282; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S53–S55
A. A. Makhnev, M. P. Golubyatnikov, “On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$”, Diskr. Mat., 34:1 (2022), 76–87; Discrete Math. Appl., 33:5 (2023), 273–281
7.
A. A. Makhnev, Wenbin Guo, K. S. Efimov, “The Koolen-Park bound and distance-regular graphs without $m$-clavs”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9, 64–69; Russian Math. (Iz. VUZ), 66:9 (2022), 54–57
8.
A. A. Makhnev, I. N. Belousov, “On distance-regular graphs of diameter $3$ with eigenvalue $0$”, Mat. Tr., 25:2 (2022), 162–173; Siberian Adv. Math., 33:1 (2023), 56–65
9.
A. A. Makhnev, I. N. Belousov, M. P. Golubyatnikov, “On $Q$-polynomial Shilla graphs with $b = 4$”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022), 176–186
10.
I. N. Belousov, A. A. Makhnev, N. A. Minigulov, “Open problems formulated at the International Algebraic Conference Dedicated to the 90th Anniversary of A. I. Starostin”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022), 269–275
11.
A. A. Makhnev, D. V. Paduchikh, “Inverse Problems in the Class of Distance-Regular Graphs of Diameter $4$”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022), 199–208; Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S121–S129
Alexander A. Makhnev, Ivan N. Belousov, Konstantin S. Efimov, “On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$”, Ural Math. J., 8:2 (2022), 127–132
13.
A. A. Makhnev, Zhigang Wan, “On $Q$-polynomial Shilla graphs with $b=6$”, Vladikavkaz. Mat. Zh., 24:2 (2022), 117–123
2021
14.
A. A. Makhnev, M. P. Golubyatnikov, “On nonexistence of distance regular graphs with the intersection array $\{53,40,28,16;1,4,10,28\}$”, Diskretn. Anal. Issled. Oper., 28:3 (2021), 38–48
A. A. Makhnev, I. N. Belousov, M. P. Golubyatnikov, M. S. Nirova, “Three infinite families of Shilla graphs do not exist”, Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 45–50; Dokl. Math., 103:3 (2021), 133–138
16.
A. A. Makhnev, Venbin Guo, “On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph”, Diskr. Mat., 33:4 (2021), 61–67; Discrete Math. Appl., 33:4 (2023), 199–204
17.
A. A. Makhnev, “Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$”, Mat. Zametki, 109:2 (2021), 247–256; Math. Notes, 109:2 (2021), 247–255
18.
A. A. Makhnev, M. S. Nirova, “Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1075–1082
19.
A. A. Makhnev, I. N. Belousov, D. V. Paduchikh, “Inverse problems of graph theory: graphs without triangles”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 27–42
20.
A. A. Makhnev, D. V. Paduchikh, “On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021), 146–156
21.
Alexander A. Makhnev, Ivan N. Belousov, “Shilla graphs with $b = 5$ and $b = 6$”, Ural Math. J., 7:2 (2021), 51–58
A. A. Makhnev, V. V. Bitkina, A. K. Gutnova, “Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist”, Vladikavkaz. Mat. Zh., 23:4 (2021), 68–76
23.
A. A. Makhnev, M. S. Nirova, “Distance-regular graph with intersection array $\{140,108,18;1,18,105\}$ does not exist”, Vladikavkaz. Mat. Zh., 23:2 (2021), 65–69
2020
24.
A. A. Makhnev, M. P. Golubyatnikov, “Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$”, Algebra Logika, 59:5 (2020), 567–581; Algebra and Logic, 59:5 (2020), 385–394
A. A. Makhnev, D. V. Paduchikh, “The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$”, Algebra Logika, 59:4 (2020), 471–479; Algebra and Logic, 59:4 (2020), 322–327
26.
A. A. Makhnev, “Antipodal Krein graphs and distance-regular graphs close to them”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 54–57; Dokl. Math., 101:3 (2020), 218–220
27.
A. A. Makhnev, M. S. Nirova, “On distance-regular graphs with $c_2=2$”, Diskr. Mat., 32:1 (2020), 74–80; Discrete Math. Appl., 31:6 (2021), 397–401
A. A. Makhnev, M. M. Isakova, A. A. Tokbaeva, “The nonexistence small $Q$-polynomial graphs of type (III)”, Sib. Èlektron. Mat. Izv., 17 (2020), 1270–1279
29.
K. S. Efimov, A. A. Makhnev, “Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020), 23–31; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S89–S96
30.
I. N. Belousov, A. A. Makhnev, “Inverse problems in the class of Q-polynomial graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020), 14–22
31.
Konstantin S. Efimov, Alexander A. Makhnev, “Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist”, Ural Math. J., 6:2 (2020), 63–67
32.
A. A. Makhnev, V. V. Bitkina, A. K. Gutnova, “Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$”, Vladikavkaz. Mat. Zh., 22:2 (2020), 24–33
2019
33.
A. A. Makhnev, M. P. Golubyatnikov, “A Shilla graph with Intersection Array $\{12,10,2;1,2,8\}$ Does not Exist”, Mat. Zametki, 106:5 (2019), 797–800; Math. Notes, 106:5 (2019), 850–853
I. N. Belousov, A. A. Makhnev, M. S. Nirova, “On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sib. Èlektron. Mat. Izv., 16 (2019), 1385–1392
A. A. Makhnev, M. M. Isakova, M. S. Nirova, “Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist”, Sib. Èlektron. Mat. Izv., 16 (2019), 1254–1259
A. A. Makhnev, V. V. Bitkina, “On automorphisms of a distance-regular graph with intersection array $\{44,30,5;1,3,40\}$”, Sib. Èlektron. Mat. Izv., 16 (2019), 777–785
38.
A. A. Makhnev, M. M. Khamgokova, “On automorphisms of a distance-regular graph with intersection array $\{39,36,22;1,2,18\}$”, Sib. Èlektron. Mat. Izv., 16 (2019), 638–647
A. A. Makhnev, V. I. Belousova, “Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$”, Sib. Èlektron. Mat. Izv., 16 (2019), 493–500
I. N. Belousov, A. A. Makhnev, “Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist”, Sib. Èlektron. Mat. Izv., 16 (2019), 206–216
A. A. Makhnev, M. P. Golubyatnikov, “Nonexistence of certain Q-polynomial distance-regular graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 136–141
42.
I. N. Belousov, A. A. Makhnev, “Inverse Problems in the Theory of Distance-Regular Graphs: Dual 2-Designs”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 44–51; Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S14–S20
43.
A. A. Makhnev, A. A. Tokbaeva, “On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$”, Vladikavkaz. Mat. Zh., 21:2 (2019), 27–37
A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Edge-symmetric distance-regular coverings of complete graphs: the almost simple case”, Algebra Logika, 57:2 (2018), 214–231; Algebra and Logic, 57:2 (2018), 141–152
I. N. Belousov, A. A. Makhnev, “Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist”, Sib. Èlektron. Mat. Izv., 15 (2018), 1506–1512
A. A. Makhnev, M. M. Khamgokova, “Automorphisms of graph with intersection array $\{232,198,1;1, 33,232\}$”, Sib. Èlektron. Mat. Izv., 15 (2018), 650–657
49.
A. A. Makhnev, M. P. Golubyatnikov, “Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$”, Sib. Èlektron. Mat. Izv., 15 (2018), 603–611
M. M. Isakova, A. A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,105\}$”, Sib. Èlektron. Mat. Izv., 15 (2018), 198–204
A. A. Makhnev, M. Kh. Shermetova, “On automorphisms of a distance-regular graph with intersection array $\{96,76,1;1,19,96\}$”, Sib. Èlektron. Mat. Izv., 15 (2018), 167–174
A. A. Makhnev, D. V. Paduchikh, “Inverse problems in distance-regular graphs theory”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 133–144; Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S88–S98
A. A. Makhnev, D. V. Paduchikh, “Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018), 173–184; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S102–S113
55.
Konstantin S. Efimov, Alexander A. Makhnev, “Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$”, Ural Math. J., 4:2 (2018), 69–78
A. K. Gutnova, A. A. Makhnev, “On automorphisms of a strongly regular graph with parameters $(117,36,15,9)$”, Vladikavkaz. Mat. Zh., 20:4 (2018), 43–49
2017
57.
V. V. Bitkina, A. A. Makhnev, “Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$”, Algebra Logika, 56:6 (2017), 671–681; Algebra and Logic, 56:6 (2018), 443–450
58.
I. N. Belousov, A. A. Makhnev, “Automorphism groups of small distance-regular graphs”, Algebra Logika, 56:4 (2017), 395–405; Algebra and Logic, 56:4 (2017), 261–268
K. S. Efimov, A. A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$”, Diskr. Mat., 29:1 (2017), 10–16; Discrete Math. Appl., 28:1 (2018), 23–27
Konstantin S. Efimov, Aleksandr A. Makhnev, “Automorphisms of the $AT4(6,6,3)$-graph and its strongly-regular graphs”, J. Sib. Fed. Univ. Math. Phys., 10:3 (2017), 271–280
61.
A. L. Gavrilyuk, A. A. Makhnev, “Automorphisms of Graphs with Intersection Arrays $\{60,45,8;1,12,50\}$ and $\{49,36,8;1,6,42\}$”, Mat. Zametki, 101:6 (2017), 823–831; Math. Notes, 101:6 (2017), 942–950
N. D. Zyulyarkina, A. A. Makhnev, D. V. Paduchikh, M. M. Khamgokova, “Vertex-transitive semi-triangular graphs with $\mu=7$”, Sib. Èlektron. Mat. Izv., 14 (2017), 1198–1206
A. A. Makhnev, M. P. Golubyatnikov, “Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$”, Sib. Èlektron. Mat. Izv., 14 (2017), 1064–1077
65.
A. A. Makhnev, M. M. Isakova, A. A. Tokbaeva, “Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$”, Sib. Èlektron. Mat. Izv., 14 (2017), 856–863
66.
A. A. Makhnev, D. V. Paduchikh, M. M. Khamgokova, “Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017), 232–242; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S112–S122
67.
A. A. Makhnev, M. S. Nirova, “On automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017), 182–190; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 166–174
Konstantin S. Efimov, Alexander A. Makhnev, “Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$”, Ural Math. J., 3:1 (2017), 27–32
V. V. Bitkina, A. A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{125,96,1;1,48,125\}$”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:1 (2017), 13–20
A. K. Gutnova, A. A. Makhnev, “On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$”, Vladikavkaz. Mat. Zh., 19:2 (2017), 11–17
2016
71.
A. A. Makhnev, L. Yu. Tsiovkina, “Arc-transitive antipodal distance-regular graphs of diameter three related to $PSL_d(q)$”, Sib. Èlektron. Mat. Izv., 13 (2016), 1339–1345
V. V. Bitkina, A. K. Gutnova, A. A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$”, Sib. Èlektron. Mat. Izv., 13 (2016), 1040–1051
A. A. Makhnev, D. V. Paduchikh, M. M. Khamgokova, “Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$”, Sib. Èlektron. Mat. Izv., 13 (2016), 972–986
74.
I. N. Belousov, A. A. Makhnev, “Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$”, Sib. Èlektron. Mat. Izv., 13 (2016), 754–761
A. A. Makhnev, V. I. Belousova, “Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$”, Sib. Èlektron. Mat. Izv., 13 (2016), 130–136
A. A. Makhnev, D. V. Paduchikh, “Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$”, Tr. Inst. Mat., 24:2 (2016), 91–97
77.
A. A. Makhnev, D. V. Paduchikh, “Graphs in which local subgraphs are strongly regular with second eigenvalue 5”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 188–200
78.
M. M. Isakova, A. A. Makhnev, A. A. Tokbaeva, “On graphs in which neighborhoods of vertices are strongly regular with parameters (85,14,3,2) or (325,54,3,10)”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 137–143; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 68–74
I. N. Belousov, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016), 28–37; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 85–94
80.
A. A. Makhnev, D. V. Paduchikh, “Small $AT4$-graphs and strongly regular subgraphs corresponding to them”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 220–230; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 164–174
A. A. Makhnev, M. S. Nirova, D. V. Paduchikh, “On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 212–219; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 101–108
Yu. S. Ponosov, A. A. Makhnev, S. V. Streltsov, V. B. Philippov, N. Yu. Shitsevalova, “Electronic Raman scattering and the electron-phonon interaction in YB$_6$”, Pis'ma v Zh. Èksper. Teoret. Fiz., 102:8 (2015), 565–570; JETP Letters, 102:8 (2015), 503–507
A. A. Makhnev, M. M. Khamgokova, “Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$”, Sib. Èlektron. Mat. Izv., 12 (2015), 930–939
A. A. Makhnev, N. V. Chuksina, “On automorphisms of a distance-regular graph with intersection array $\{75,72,1;1,12,75\}$”, Sib. Èlektron. Mat. Izv., 12 (2015), 802–809
K. S. Efimov, A. A. Makhnev, “Automorphisms of a distance-regular graph with intersection array $\{100,66,1;1,33,100\}$”, Sib. Èlektron. Mat. Izv., 12 (2015), 795–801
I. N. Belousov, A. A. Makhnev, “Strongly uniform extensions of dual 2-designs”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 35–45; Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 32–42
V. V. Bitkina, A. K. Gutnova, A. A. Makhnev, “Automorphisms of a strongly regular graph with parameters $(1197,156,15,21)$”, Vladikavkaz. Mat. Zh., 17:2 (2015), 5–11
A. K. Gutnova, A. A. Makhnev, “Extensions of pseudo-geometric graphs of the partial geometries $pG_{s-4}(s,t)$”, Vladikavkaz. Mat. Zh., 17:1 (2015), 21–30
N. D. Zyulyarkina, A. A. Makhnev, “Automorphisms of Higman graphs with $\mu=6$”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 184–209; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 240–268
A. A. Makhnev, D. V. Paduchikh, “On extensions of exceptional strongly regular graphs with eigenvalue 3”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 169–184; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 112–128
2013
95.
A. A. Makhnev, M. S. Nirova, “On strongly regular graphs with $b_1<26$”, Diskr. Mat., 25:3 (2013), 22–32; Discrete Math. Appl., 24:1 (2014), 13–20
96.
A. L. Gavrilyuk, A. A. Makhnev, “Distance-regular graph with the intersection array $\{45,30,7;1,2,27\}$ does not exist”, Diskr. Mat., 25:2 (2013), 13–30; Discrete Math. Appl., 23:3-4 (2013), 225–244
A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Edge-symmetric distance-regular coverings of cliques: The affine case”, Sibirsk. Mat. Zh., 54:6 (2013), 1353–1367; Siberian Math. J., 54:6 (2013), 1076–1087
A. A. Makhnev, D. V. Paduchikh, “Exceptional strongly regular graphs with eigenvalue 3”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013), 167–174; Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 93–101
A. A. Makhnev, D. V. Paduchikh, “On strongly regular graphs with eigenvalue $\mu$ and their extensions”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013), 207–214; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S128–S135
A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013), 237–246; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 124–134
A. A. Makhnev, A. M. Kagazezheva, “On automorphisms of strongly regular graphs with parameters $(320,99,18,36)$”, Vladikavkaz. Mat. Zh., 15:2 (2013), 58–68
A. A. Makhnev, D. V. Paduchikh, “An automorphism group of a distance-regular graph with intersection array $\{24,21,3;1,3,18\}$”, Algebra Logika, 51:4 (2012), 476–495; Algebra and Logic, 51:4 (2012), 319–332
A. A. Makhnev, D. V. Paduchikh, “Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012), 155–163; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 91–99
A. A. Makhnev, L. Yu. Tsiovkina, “On automorphisms of a distance-regular graph with intersection array $\{35,32,8;1,2,28\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012), 235–241
K. S. Efimov, A. A. Makhnev, “On completely regular graphs with $k=11, $$\lambda=4$”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012), 83–92
A. L. Gavrilyuk, A. A. Makhnev, “On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman–Singleton Graph”, Mat. Zametki, 89:5 (2011), 673–685; Math. Notes, 89:5 (2011), 633–644
V. I. Belousova, A. A. Makhnev, “On almost good triples of vertices in edge regular graphs”, Sibirsk. Mat. Zh., 52:4 (2011), 745–753; Siberian Math. J., 52:4 (2011), 585–592
A. A. Makhnev, N. V. Chuksina, “On automorphisms of a strongly regular graph with parameters $(210,95,40,45)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 199–208; Proc. Steklov Inst. Math. (Suppl.), 279, suppl. 1 (2012), 62–72
A. A. Makhnev, D. V. Paduchikh, “On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 189–198; Proc. Steklov Inst. Math. (Suppl.), 279, suppl. 1 (2012), 73–83
A. K. Gutnova, A. A. Makhnev, “On graphs the neighbourhoods of whose verticesare pseudo-geometric graphs for $GQ(3,3)$”, Tr. Inst. Mat., 18:1 (2010), 28–35
A. A. Makhnev, A. A. Tokbaeva, “On automorphisms of a strongly regular graph with parameters (76,35,18,14)”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 185–194
V. V. Kabanov, A. A. Makhnev, D. V. Paduchikh, “On strongly regular graphs with eigenvalue 2 and their extensions”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 105–116
M. M. Isakova, A. A. Makhnev, “On automorphisms of a strongly regular graph with parameters (64,35,18,20)”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 96–104
A. L. Gavrilyuk, A. A. Makhnev, D. V. Paduchikh, “Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010), 35–47
A. A. Makhnev, A. A. Tokbaeva, “On automorphisms of strongly regular graphs with parameters $(243,66,9,21)$”, Vladikavkaz. Mat. Zh., 12:4 (2010), 49–59
M. M. Isakova, A. A. Makhnev, “On automorphisms of strongly regular graph with parameters $(396,135,30,54)$”, Vladikavkaz. Mat. Zh., 12:3 (2010), 30–40
A. A. Makhnev, V. V. Nosov, “On automorphisms of strongly regular graphs with $\lambda=0$ and $\mu=3$”, Algebra i Analiz, 21:5 (2009), 138–154; St. Petersburg Math. J., 21:5 (2010), 779–790
Guo Wenbin, A. A. Makhnev, D. V. Paduchikh, “Automorphisms of Coverings of Strongly Regular Graphs with Parameters (81,20,1,6)”, Mat. Zametki, 86:1 (2009), 22–36; Math. Notes, 86:1 (2009), 26–40
A. A. Makhnev, D. V. Paduchikh, “On the automorphism group of the Aschbacher graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009), 162–176; Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S149–S163
A. A. Makhnev, “Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009), 143–161; Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S128–S148
I. N. Belousov, A. A. Makhnev, “Оn automorphisms of the generalized hexagon of order (3,27)”, Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009), 34–44; Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S33–S43
A. L. Gavrilyuk, Wenbin Guo, A. A. Makhnev, “Automorphisms of Terwilliger graphs with $\mu=2$”, Algebra Logika, 47:5 (2008), 584–600; Algebra and Logic, 47:5 (2008), 330–339
I. N. Belousov, A. A. Makhnev, “On Automorphisms of a Generalized Octagon of Order $(2,4)$”, Mat. Zametki, 84:4 (2008), 516–526; Math. Notes, 84:4 (2008), 483–492
A. A. Makhnev, N. V. Chuksina, “О хороших парах вершин в реберно регулярных графах с $k=3b_1-1$”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008), 119–134
V. V. Kabanov, A. A. Makhnev, D. V. Paduchikh, “Графы без 3-корон с некоторыми условиями регулярности”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008), 53–69
A. A. Makhnev, D. V. Paduchikh, “A new estimate for the vertex number of an edge-regular graph”, Sibirsk. Mat. Zh., 48:4 (2007), 817–832; Siberian Math. J., 48:4 (2007), 653–665
A. L. Gavrilyuk, A. A. Makhnev, “Об автоморфизмах дистанционно регулярного графа с массивом пересечений $\{60,45,8;1,12,50\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007), 41–53
A. A. Makhnev, M. S. Nirova, “Uniform extensions of partial geometries”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007), 148–157; Proc. Steklov Inst. Math. (Suppl.), 257, suppl. 1 (2007), S135–S144
I. N. Belousov, A. A. Makhnev, “A distance-regular graph with the intersection array $\{8,7,5;1,1,4\}$ and its automorphisms”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007), 44–56; Proc. Steklov Inst. Math. (Suppl.), 257, suppl. 1 (2007), S47–S60
I. N. Belousov, A. A. Makhnev, “On edge-regular graphs with $k\ge 3b_1-3$”, Algebra i Analiz, 18:4 (2006), 10–38; St. Petersburg Math. J., 18:4 (2007), 517–538
A. A. Makhnev, M. S. Nirova, “Slender partial quadrangles and their automorphisms”, Algebra Logika, 45:5 (2006), 603–619; Algebra and Logic, 45:5 (2006), 344–352
A. L. Gavrilyuk, A. A. Makhnev, “Amply regular graphs and block designs”, Sibirsk. Mat. Zh., 47:4 (2006), 753–768; Siberian Math. J., 47:4 (2006), 621–633
V. I. Kazarina, A. A. Makhnev, “On local $GQ(s,t)$ graphs with strongly regular $\mu$-subgraphs”, Algebra i Analiz, 17:3 (2005), 93–106; St. Petersburg Math. J., 17:3 (2006), 443–452
A. A. Makhnev, V. V. Nosov, “Automorphisms of Strongly Regular Krein Graphs without Triangles”, Algebra Logika, 44:3 (2005), 335–354; Algebra and Logic, 44:3 (2005), 185–196
A. A. Makhnev, I. M. Minakova, “On automorphisms of strongly regular graphs with the parameters $\lambda=1$ and $\mu=2$”, Diskr. Mat., 16:1 (2004), 95–104; Discrete Math. Appl., 14:2 (2004), 201–210
A. A. Makhnev, V. V. Nosov, “On automorphisms of strongly regular graphs with $\lambda=0$, $\mu=2$”, Mat. Sb., 195:3 (2004), 47–68; Sb. Math., 195:3 (2004), 347–367
A. A. Makhnev, A. A. Vedenev, A. N. Kuznetsov, V. V. Nosov, “On good pairs in edge-regular graphs”, Diskr. Mat., 15:1 (2003), 77–97; Discrete Math. Appl., 13:1 (2003), 85–104
V. V. Kabanov, A. A. Makhnev, D. V. Paduchikh, “On Crown-Free Graphs with Regular $\mu$-Subgraphs, II”, Mat. Zametki, 74:3 (2003), 396–406; Math. Notes, 74:3 (2003), 375–384
A. A. Makhnev (Jr.), A. A. Makhnev, “Ovoids and Bipartite Subgraphs in Generalized Quadrangles”, Mat. Zametki, 73:6 (2003), 878–885; Math. Notes, 73:6 (2003), 829–837
A. A. Makhnev, “On strongly regular graphs with $k=2\mu$ and their extensions”, Sibirsk. Mat. Zh., 43:3 (2002), 609–619; Siberian Math. J., 43:3 (2002), 487–495
A. A. Makhnev, D. V. Paduchikh, “Extensions of $\mathit{GQ}(4,2)$, the completely regular case”, Diskr. Mat., 13:3 (2001), 91–109; Discrete Math. Appl., 11:4 (2001), 401–419
A. A. Makhnev, “On the graphs with $µ$-subgraphs isomorphic to $K_{u\times 2}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001), 215–224; Proc. Steklov Inst. Math. (Suppl.), 2001no. , suppl. 2, S169–S178
A. A. Makhnev, “On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$”, Mat. Sb., 191:7 (2000), 89–104; Sb. Math., 191:7 (2000), 1033–1048
A. A. Makhnev, D. V. Paduchikh, “Locally Shrikhande graphs and their automorphisms”, Sibirsk. Mat. Zh., 39:5 (1998), 1085–1097; Siberian Math. J., 39:5 (1998), 936–946
A. A. Makhnev, “Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals”, Diskr. Mat., 9:3 (1997), 101–116; Discrete Math. Appl., 7:4 (1997), 419–435
A. A. Makhnev, “Characterization of a class of edge-regular graphs”, Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 1, 22–27; Russian Math. (Iz. VUZ), 41:1 (1997), 20–25
V. V. Kabanov, A. A. Makhnev, “On separated graphs with certain regularity conditions”, Mat. Sb., 187:10 (1996), 73–86; Sb. Math., 187:10 (1996), 1487–1501
A. A. Makhnev, “On a strongly regular graph with the parameters $(64,18,2,6)$”, Diskr. Mat., 7:3 (1995), 121–128; Discrete Math. Appl., 5:5 (1995), 463–472
A. S. Kondrat'ev, A. A. Makhnev, A. I. Starostin, “Finite groups”, Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 24 (1986), 3–120; J. Soviet Math., 44:3 (1989), 237–318
A. A. Makhnev, “$TI$-subgroups in groups of characteristic 2 type”, Mat. Sb. (N.S.), 127(169):2(6) (1985), 239–244; Math. USSR-Sb., 55:1 (1986), 237–242
A. A. Makhnev, “On the generation of finite groups by classes of involutions”, Mat. Sb. (N.S.), 111(153):2 (1980), 266–278; Math. USSR-Sb., 39:2 (1981), 243–253
A. V. Abanin, E. K. Basaeva, A. O. Vatulyan, S. K. Vodop'yanov, A. E. Gutman, V. A. Koibaev, Yu. F. Korobeinik, S. B. Klimentov, S. S. Kutateladze, A. A. Makhnev, B. B. Tasoev, S. M. Umarkhadzhiev, M. Z. Hudalov, “To the 65-th anniversary of prof. A. G. Kusraev”, Vladikavkaz. Mat. Zh., 20:2 (2018), 111–119
2015
209.
N. A. Vavilov, A. Kh. Zhurtov, A. S. Kondrat'ev, A. G. Kusraev, V. M. Levchuk, V. D. Mazurov, A. A. Makhnev, Ya. N. Nuzhin, U. M. Pachev, B. I. Plotkin, N. S. Romanovskii, “Koibaev Vladimir Amurkhanovich (on his 60th birthday)”, Vladikavkaz. Mat. Zh., 17:2 (2015), 68–70
2014
210.
V. I. Berdyshev, V. V. Vasin, S. V. Matveev, A. A. Makhnev, Yu. N. Subbotin, N. N. Subbotina, V. N. Ushakov, M. Yu. Khachai, A. G. Chentsov, “Ivan Ivanovich Eremin”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 5–12; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 1–8
2012
211.
I. I. Eremin, A. A. Makhnev, “On the 100th birthday of Sergei Nikolaevich Chernikov”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012), 5–9; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 1–5
A. S. Kondrat'ev, A. A. Makhnev, “International conference on “Algebra and geometry” dedicated to the 80th birthday A. I. Starostin”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 321–325
N. N. Krasovskii, I. I. Eremin, A. M. Il'in, A. V. Kryazhimskii, A. B. Kurzhanskii, V. I. Berdyshev, V. V. Vasin, A. A. Makhnev, S. V. Matveev, Yu. N. Subbotin, A. G. Chentsov, V. N. Ushakov, V. V. Kabanov, V. I. Maksimov, “To the 75th anniversary of academician of Russian Academy of Sciences Yu. S. Osipov”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011), 5–6; Proc. Steklov Inst. Math. (Suppl.), 276, suppl. 1 (2012), S1–S3
A. A. Makhnev, “School-Conference on Group Theory”, Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009), 222–225; Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S244–S247
V. I. Berdyshev, V. V. Vasin, A. A. Makhnev, Yu. N. Subbotin, “On the collaboration of Siberian and Ural mathematicians”, Sib. Èlektron. Mat. Izv., 4 (2007), 22–27
A. A. Makhnev, V. A. Kondrat'ev, “International Conference on group theory deducated to the memory of S. N. Chernikov”, Uspekhi Mat. Nauk, 53:4(322) (1998), 223