Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 2, Pages 125–134 (Mi al212)  

This article is cited in 21 scientific papers (total in 22 papers)

Automorphisms of Aschbacher Graphs

A. A. Makhnev, D. V. Paduchikh

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract: If a regular graph of valence $k$ and diameter $d$ has $v$ vertices, then $v\leqslant1+k+k(k-1)+\dots+k(k-1)^{d-1}$, which was proved by Moore (cf. [1]). Graphs for which this non-strict inequality turns into an equality are called Moore graphs. Such have an odd girth equal to $2d+1$. The simplest example of a Moore graph is furnished by a $(2d+1)$-triangle. Damerell proved that a Moore graph of valence $k\geqslant3$ has diameter 2. In this case $v=k^2+1$, the graph is strongly regular with $\lambda=0$ and $\mu=1$, and the valence $k$ is equal to 3 (Peterson's graph), to 7 (Hoffman-Singleton's graph), or to 57. The first two graphs are of rank 3. Whether a Moore graph of valence $k=57$exists is not known; yet, Aschbacher proved that the Moore graph with $k=57$ will not be a rank 3 graph. We call the Moore graph with $k=57$ the Aschbacher graph. Cameron showed that such cannot be vertex transitive. Here, we treat subgraphs of fixed points of Moore graph automorphisms and an automorphism group of the hypothetical Aschbacher graph for the case where that group contains an involution.
Keywords: Moore graph, Aschbacher Graph, automorphism, involution.
Received: 25.06.1999
Revised: 15.03.2000
English version:
Algebra and Logic, 2001, Volume 40, Issue 2, Pages 69–74
DOI: https://doi.org/10.1023/A:1010217919915
Bibliographic databases:
UDC: 519.14+512.542
Language: Russian
Citation: A. A. Makhnev, D. V. Paduchikh, “Automorphisms of Aschbacher Graphs”, Algebra Logika, 40:2 (2001), 125–134; Algebra and Logic, 40:2 (2001), 69–74
Citation in format AMSBIB
\Bibitem{MakPad01}
\by A.~A.~Makhnev, D.~V.~Paduchikh
\paper Automorphisms of Aschbacher Graphs
\jour Algebra Logika
\yr 2001
\vol 40
\issue 2
\pages 125--134
\mathnet{http://mi.mathnet.ru/al212}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1850442}
\zmath{https://zbmath.org/?q=an:1009.20004}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 2
\pages 69--74
\crossref{https://doi.org/10.1023/A:1010217919915}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52549111371}
Linking options:
  • https://www.mathnet.ru/eng/al212
  • https://www.mathnet.ru/eng/al/v40/i2/p125
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024