Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2003, Volume 15, Issue 1, Pages 77–97
DOI: https://doi.org/10.4213/dm186
(Mi dm186)
 

This article is cited in 7 scientific papers (total in 8 papers)

On good pairs in edge-regular graphs

A. A. Makhnev, A. A. Vedenev, A. N. Kuznetsov, V. V. Nosov
References:
Abstract: An undirected graph on $v$ vertices of valences equal to $k$, whose each edge belongs to exactly $\lambda$ triangles is called edge-regular with parameters $(v,k,\lambda)$. Let $b_1=k-\lambda-1$. We say that a pair of vertices $u$, $w$ is good if these vertices have exactly $k-2b_1+1$ common neighbours. We prove that if $k\ge3b_1-1$, then either for any vertex $u$ at most two vertices in $\Gamma$ form good pairs with $u$, or $k=3b_1-1$, $\Gamma$ is a polygon or the icosahedron graph, and any two vertices which are 2 distant from each other form good pairs. We give a new upper bound for the number of vertices in an edge-regular graph of diameter two with $k\ge3b_1-1$. We prove that an edge-regular graph with parameters of the triangular graph $T(n)$, $n=5,6$, the Clebsch graph, or the Schläfli graph coincides with the corresponding graph.
This research was supported by the Russian Foundation for Basic Research, grant 02–01–00772.
Received: 24.01.2002
English version:
Discrete Mathematics and Applications, 2003, Volume 13, Issue 1, Pages 85–104
DOI: https://doi.org/10.1515/156939203321669573
Bibliographic databases:
UDC: 519.14
Language: Russian
Citation: A. A. Makhnev, A. A. Vedenev, A. N. Kuznetsov, V. V. Nosov, “On good pairs in edge-regular graphs”, Diskr. Mat., 15:1 (2003), 77–97; Discrete Math. Appl., 13:1 (2003), 85–104
Citation in format AMSBIB
\Bibitem{MakVedKuz03}
\by A.~A.~Makhnev, A.~A.~Vedenev, A.~N.~Kuznetsov, V.~V.~Nosov
\paper On good pairs in edge-regular graphs
\jour Diskr. Mat.
\yr 2003
\vol 15
\issue 1
\pages 77--97
\mathnet{http://mi.mathnet.ru/dm186}
\crossref{https://doi.org/10.4213/dm186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1996746}
\zmath{https://zbmath.org/?q=an:1050.05119}
\transl
\jour Discrete Math. Appl.
\yr 2003
\vol 13
\issue 1
\pages 85--104
\crossref{https://doi.org/10.1515/156939203321669573}
Linking options:
  • https://www.mathnet.ru/eng/dm186
  • https://doi.org/10.4213/dm186
  • https://www.mathnet.ru/eng/dm/v15/i1/p77
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:630
    Full-text PDF :253
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024