Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 1135–1146
DOI: https://doi.org/10.17377/semi.2017.14.097
(Mi semr853)
 

This article is cited in 5 scientific papers (total in 5 papers)

Discrete mathematics and mathematical cybernetics

To the theory of Shilla graphs with $b_2=c_2$

A. A. Makhnev, I. N. Belousov

Krasovskii Institute of Mathematics and Mechanics, 16 S.Kovalevskaya Str., 620990, Yekaterinburg, Russia
Full-text PDF (177 kB) Citations (5)
References:
Abstract: In this paper by using exact formulas for multiplicities of eigenvalues it is founded new infinite serie intersection arrays of $Q$-polynomial Shilla graph with $b_2 = c_2$. Intersection array of $Q$-polynomial Shilla graph $\Gamma$ with $b_2=c_2$ is $\{2rt(2r+1),(2r-1)(2rt+t+1),r(r+t);1,r(r+t),t(4r^2-1)\}$ and for any vertex $u\in \Gamma$ the subgraph $\Gamma_3(u)$ is an antipodal distance-regular graph with the intersection array $\{t(2r+1),(2r-1)(t+1),1;1,t+1,t(2r+1)\}$. In case $t=2r^2-1$ the intersection array is feasible and in case $t=r(2lr-(l+1))$ the intersection array is feasible only if $(l,r)\in \{(1,2),(2,1),(4,1),(6,1)\}$.
Keywords: distance-regular graph, Shilla graph.
Funding agency Grant number
Russian Science Foundation 14-11-00061-П
Received October 6, 2017, published November 14, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.17+512.54
MSC: 05C25
Language: Russian
Citation: A. A. Makhnev, I. N. Belousov, “To the theory of Shilla graphs with $b_2=c_2$”, Sib. Èlektron. Mat. Izv., 14 (2017), 1135–1146
Citation in format AMSBIB
\Bibitem{MakBel17}
\by A.~A.~Makhnev, I.~N.~Belousov
\paper To the theory of Shilla graphs with $b_2=c_2$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1135--1146
\mathnet{http://mi.mathnet.ru/semr853}
\crossref{https://doi.org/10.17377/semi.2017.14.097}
Linking options:
  • https://www.mathnet.ru/eng/semr853
  • https://www.mathnet.ru/eng/semr/v14/p1135
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :58
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024