Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2009, Volume 15, Number 2, Pages 162–176 (Mi timm232)  

This article is cited in 2 scientific papers (total in 3 papers)

On the automorphism group of the Aschbacher graph

A. A. Makhnev, D. V. Paduchikh

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (233 kB) Citations (3)
References:
Abstract: A Moore graph is a regular graph of degree $k$ and diameter $d$ with $v$ vertices such that $v\le1+k+k(k-1)+\dots+k(k-1)^{d-1}$. It is known that a Moore graph of degree $k\ge3$ has diameter 2, i.e., it is strongly regular with parameters $\lambda=0$, $\mu=1$ and $v=k^2+1$, where the degree $k$ is equal to 3, 7, or 57. It is unknown whether there exists a Moore graph of degree $k=57$. Aschbacher showed that a Moore graph with $k=57$ is not a graph of rank 3. In this connection, we call a Moore graph with $k=57$ the Aschbacher graph and investigate its automorphism group $G$ without additional assumptions (earlier, it was assumed that $G$ contains an involution).
Keywords: automorphism group of a graph, Moore graph, strongly regular graph.
Received: 10.12.2008
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, Volume 267, Issue 1, Pages S149–S163
DOI: https://doi.org/10.1134/S0081543809070141
Bibliographic databases:
Document Type: Article
UDC: 519.17+512.54
Language: Russian
Citation: A. A. Makhnev, D. V. Paduchikh, “On the automorphism group of the Aschbacher graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 2, 2009, 162–176; Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S149–S163
Citation in format AMSBIB
\Bibitem{MakPad09}
\by A.~A.~Makhnev, D.~V.~Paduchikh
\paper On the automorphism group of the Aschbacher graph
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 2
\pages 162--176
\mathnet{http://mi.mathnet.ru/timm232}
\elib{https://elibrary.ru/item.asp?id=12878778}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 267
\issue , suppl. 1
\pages S149--S163
\crossref{https://doi.org/10.1134/S0081543809070141}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274041900014}
Linking options:
  • https://www.mathnet.ru/eng/timm232
  • https://www.mathnet.ru/eng/timm/v15/i2/p162
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:523
    Full-text PDF :125
    References:62
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024