|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 1, Pages 212–219
(Mi timm1272)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$
A. A. Makhnevab, M. S. Nirovaac, D. V. Paduchikha a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
c Kabardino-Balkar State University, Nal'chik
Abstract:
A distance-regular graph $\Gamma$ with intersection array $\{204,175,48,1;1,12,175,204\}$ is an $AT4$-graph. The antipodal quotient $\bar \Gamma$ has parameters $(800,204,28,60)$. Automorphisms of the specified graphs are found. In particular, neither of the two graphs is edge-symmetric.
Keywords:
strongly regular graph, eigenvalue of a graph, automorphism of a graph.
Received: 27.08.2015
Citation:
A. A. Makhnev, M. S. Nirova, D. V. Paduchikh, “On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 212–219; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 101–108
Linking options:
https://www.mathnet.ru/eng/timm1272 https://www.mathnet.ru/eng/timm/v22/i1/p212
|
Statistics & downloads: |
Abstract page: | 244 | Full-text PDF : | 60 | References: | 71 | First page: | 23 |
|