Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 1, Pages 159–180
DOI: https://doi.org/10.1070/IM2004v068n01ABEH000469
(Mi im469)
 

This article is cited in 14 scientific papers (total in 15 papers)

On the strong regularity of some edge-regular graphs

A. A. Makhnev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: An undirected graph is said to be edge-regular with parameters $(v,k,\lambda)$ if it has $v$ vertices, each vertex has degree $k$, and each edge belongs to $\lambda$ triangles. We put $b_1=v-k-\lambda$. Brouwer, Cohen, and Neumaier proved that every connected edge-regular graph with $\lambda\geqslant k+1/2-\sqrt{2k+2}$ (equivalently, with $k\geqslant b_1(b_1+3)/2+1$) is strongly regular. In this paper we construct an example of an edge-regular, not strongly regular graph on 36 vertices with $k=27=b_1(b_1+3)/2$. This shows that the estimate above is sharp. We prove that every connected edge-regular graph with $\lambda\geqslant k+1/2-\sqrt{2k+8}$ (equivalently, $k\geqslant b_1(b_1+3)/2-2$ either satisfies $b_1\leqslant 3$, or has parameters $(36,27,20)$ or $(64,52,42)$, or is strongly regular.
Received: 09.01.2001
Bibliographic databases:
UDC: 519.14
MSC: 05C12, 05C75, 05E30
Language: English
Original paper language: Russian
Citation: A. A. Makhnev, “On the strong regularity of some edge-regular graphs”, Izv. Math., 68:1 (2004), 159–180
Citation in format AMSBIB
\Bibitem{Mak04}
\by A.~A.~Makhnev
\paper On the strong regularity of some edge-regular graphs
\jour Izv. Math.
\yr 2004
\vol 68
\issue 1
\pages 159--180
\mathnet{http://mi.mathnet.ru//eng/im469}
\crossref{https://doi.org/10.1070/IM2004v068n01ABEH000469}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2096940}
\zmath{https://zbmath.org/?q=an:1080.05100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221332600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645451205}
Linking options:
  • https://www.mathnet.ru/eng/im469
  • https://doi.org/10.1070/IM2004v068n01ABEH000469
  • https://www.mathnet.ru/eng/im/v68/i1/p159
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024