Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2019, Volume 21, Number 2, Pages 27–37
DOI: https://doi.org/10.23671/VNC.2019.2.32115
(Mi vmj691)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$

A. A. Makhnevab, A. A. Tokbaevac

a N. N. Krasovskii Institute of Mathematics and Mechanics, 16 S. Kovalevskaja St., Ekaterinburg 620990, Russia
b Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
c Kh. M. Berbekov Kabardino-Balkarian State University, 173 Chernyshevsky St., Nalchik 360004, Russia
Full-text PDF (293 kB) Citations (1)
References:
Abstract: It is proved that for a distance-regular graph $\Gamma$ of diameter $3$ with eigenvalue $\theta_2=-1$ the complement graph of $\Gamma_3$ is pseudo-geometric for $pG_{c_3}(k,b_1/c_2 )$. Bang and Koolen investigated distance-regular graphs with intersection arrays ${(t+1)s,ts, (s+1-\psi); 1,2,(t+1)\psi}$. If $t=4$, $s=7$, $\psi=6$ then we have array ${35,28,6;1,2,30}$. Distance-regular graph $\Gamma$ with intersection array $\{35,28,6; 1,2,30\}$ has spectrum of $35^1$, $9^{168}$, $-1^{182}$, $-5^{273}$, $v=1+35+490+98=624$ vertices and $\overline{\Gamma}_3$ is a pseudogeometric graph for $pG_{30}(35,14)$. Due to the border of Delsarte, the order of clicks in $\Gamma$ is not more than $8$. It is also proved that either a neighborhood of any vertex in $\Gamma$ is the union of an isolated $7$-click, or the neighborhood of any vertex in $\Gamma$ does not contain a $7$-click and is a connected graph. The structure of the group $G$ of automorphisms of a graph $\Gamma$ with an intersection array $\{35,28,6; 1,2,30\}$ has been studied. In particular, $\pi(G)\subseteq\{2,3,5,7,13\}$ and the edge symmetric graph $\Gamma$ has a solvable group automorphisms.
Key words: distance-regular graph, Delsarte clique, geometric graph.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
Received: 19.02.2019
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 20D45
Language: Russian
Citation: A. A. Makhnev, A. A. Tokbaeva, “On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$”, Vladikavkaz. Mat. Zh., 21:2 (2019), 27–37
Citation in format AMSBIB
\Bibitem{MakTok19}
\by A.~A.~Makhnev, A.~A.~Tokbaeva
\paper On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$
\jour Vladikavkaz. Mat. Zh.
\yr 2019
\vol 21
\issue 2
\pages 27--37
\mathnet{http://mi.mathnet.ru/vmj691}
\crossref{https://doi.org/10.23671/VNC.2019.2.32115}
\elib{https://elibrary.ru/item.asp?id=39112802}
Linking options:
  • https://www.mathnet.ru/eng/vmj691
  • https://www.mathnet.ru/eng/vmj/v21/i2/p27
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024