Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 4, Pages 189–198 (Mi timm764)  

This article is cited in 2 scientific papers (total in 3 papers)

On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph

A. A. Makhnevab, D. V. Paduchikha

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
Full-text PDF (195 kB) Citations (3)
References:
Abstract: The Higman–Sims graph is the unique strongly regular graph with parameters $(100,22,0,6)$. In this paper, amply regular graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph are classified. This result continues the investigation of amply regular locally $\mathcal F$-graphs, where $\mathcal F$ is the class of strongly regular graphs without triangles.
Keywords: strongly regular graph, Higman–Sims graph, locally $\mathcal F$-graph.
Received: 28.01.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, Volume 279, Issue 1, Pages 73–83
DOI: https://doi.org/10.1134/S0081543812090064
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: A. A. Makhnev, D. V. Paduchikh, “On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 189–198; Proc. Steklov Inst. Math. (Suppl.), 279, suppl. 1 (2012), 73–83
Citation in format AMSBIB
\Bibitem{MakPad11}
\by A.~A.~Makhnev, D.~V.~Paduchikh
\paper On graphs in which neighborhoods of vertices are isomorphic to the Higman--Sims graph
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 4
\pages 189--198
\mathnet{http://mi.mathnet.ru/timm764}
\elib{https://elibrary.ru/item.asp?id=17870437}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 279
\issue , suppl. 1
\pages 73--83
\crossref{https://doi.org/10.1134/S0081543812090064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312634700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871279020}
Linking options:
  • https://www.mathnet.ru/eng/timm764
  • https://www.mathnet.ru/eng/timm/v17/i4/p189
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :84
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024