Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 4, Pages 817–832 (Mi smj1747)  

This article is cited in 4 scientific papers (total in 5 papers)

A new estimate for the vertex number of an edge-regular graph

A. A. Makhnev, D. V. Paduchikh

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (447 kB) Citations (5)
References:
Abstract: Given a connected edge-regular graph $\Gamma$ with parameters $(v,k,\lambda)$ and $b_1=k-\lambda-1$, we prove that in the case $k\geqslant3b_1-2$ either $|\Gamma_2(u)|(k-2b_1+2)<kb_1$ for every vertex $u$ or $\Gamma$ is a polygon, the edge graph of a trivalent graph without triangles that has diameter greater than 2, the icosahedral graph, the complete multipartite graph $K_{r\times2}$, the $3\times3$-grid, the triangular graph $T(m)$ with $m\leqslant7$, the Clebsch graph, or the Schläfli graph.
Keywords: edge-regular graph, characterization by parameters.
Received: 22.11.2005
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 4, Pages 653–665
DOI: https://doi.org/10.1007/s11202-007-0067-4
Bibliographic databases:
Language: Russian
Citation: A. A. Makhnev, D. V. Paduchikh, “A new estimate for the vertex number of an edge-regular graph”, Sibirsk. Mat. Zh., 48:4 (2007), 817–832; Siberian Math. J., 48:4 (2007), 653–665
Citation in format AMSBIB
\Bibitem{MakPad07}
\by A.~A.~Makhnev, D.~V.~Paduchikh
\paper A new estimate for the vertex number of an edge-regular graph
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 4
\pages 817--832
\mathnet{http://mi.mathnet.ru/smj1747}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355376}
\zmath{https://zbmath.org/?q=an:1164.05439}
\elib{https://elibrary.ru/item.asp?id=9516496}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 4
\pages 653--665
\crossref{https://doi.org/10.1007/s11202-007-0067-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249307000008}
\elib{https://elibrary.ru/item.asp?id=13553156}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548070692}
Linking options:
  • https://www.mathnet.ru/eng/smj1747
  • https://www.mathnet.ru/eng/smj/v48/i4/p817
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :89
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024