Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 1385–1392
DOI: https://doi.org/10.33048/semi.2019.16.096
(Mi semr1137)
 

This article is cited in 3 scientific papers (total in 3 papers)

Discrete mathematics and mathematical cybernetics

On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$

I. N. Belousova, A. A. Makhneva, M. S. Nirovab

a N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaya str., Yekaterinburg, 620990, Russia
b Kabardino-Balkarian State University named after H.M. Berbekov, 175, Chernyshevsky str., Nalchik, 360004, Russia
Full-text PDF (148 kB) Citations (3)
References:
Abstract: Let $\Gamma$ be a distance-regular graph of diameter 3 with strongly regular graphs $\Gamma_2$ and $\Gamma_3$. Then $\Gamma$ has intersection array $\{t(c_2+1)+a_3,tc_2,a_3+1;1,c_2,t(c_2+1)\}$ (Nirova M.S.) If $\Gamma$ is $Q$-polynomial then either $a_3=0,t=1$ and $\Gamma$ is Taylor graph or $(c_2+1)=a_3(a_3+1)/(t^2-a_3-1)$. We found 4 infinite series feasible intersection arrays in this situation.
Keywords: distance-regular graph, $Q$-polynomial graph.
Received July 17, 2019, published October 7, 2019
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: I. N. Belousov, A. A. Makhnev, M. S. Nirova, “On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sib. Èlektron. Mat. Izv., 16 (2019), 1385–1392
Citation in format AMSBIB
\Bibitem{BelMakNir19}
\by I.~N.~Belousov, A.~A.~Makhnev, M.~S.~Nirova
\paper On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1385--1392
\mathnet{http://mi.mathnet.ru/semr1137}
\crossref{https://doi.org/10.33048/semi.2019.16.096}
Linking options:
  • https://www.mathnet.ru/eng/semr1137
  • https://www.mathnet.ru/eng/semr/v16/p1385
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :162
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024