Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 4, Pages 279–282
DOI: https://doi.org/10.21538/0134-4889-2023-29-4-279-282
(Mi timm2054)
 

On Graphs in Which the Neighborhoods of Vertices Are Edge-Regular Graphs without 3-Claws

M. Chena, A. A. Makhnevbc, M. S. Nirovad

a Hainan University
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
d Kabardino-Balkar State University, Nal'chik
References:
Abstract: The triangle-free Krein graph Kre$(r)$ is strongly regular with parameters $((r^2+3r)^2,$ $r^3+3r^2+r,0,r^2+r)$. The existence of such graphs is known only for $r=1$ (the complement of the Clebsch graph) and $r=2$ (the Higman–Sims graph). A. L. Gavrilyuk and A. A. Makhnev proved that the graph Kre$(3)$ does not exist. Later Makhnev proved that the graph Kre$(4)$ does not exist. The graph Kre$(r)$ is the only strongly regular triangle-free graph in which the antineighborhood of a vertex Kre$(r)'$ is strongly regular. The graph Kre$(r)'$ has parameters $((r^2+2r-1)(r^2+3r+1),r^3+2r^2,0,r^2)$. This work clarifies Makhnev's result on graphs in which the neighborhoods of vertices are strongly regular graphs without $3$-cocliques. As a consequence, it is proved that the graph Kre$(r)$ exists if and only if the graph Kre$(r)'$ exists and is the complement of the block graph of a quasi-symmetric $2$-design.
Keywords: distance-regular graph, strongly regular graph.
Funding agency Grant number
National Natural Science Foundation of China 12171126
Hainan Provincial Natural Science Foundation of China
This work was supported by the National Natural Science Foundation of China (project no. 12171126) and by a grant from the Engineering Modeling and Statistical Computing Laboratory of the Hainan Province.
Received: 22.08.2023
Revised: 12.09.2023
Accepted: 18.09.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 323, Issue 1, Pages S53–S55
DOI: https://doi.org/10.1134/S0081543823060044
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05E30, 05C50
Language: Russian
Citation: M. Chen, A. A. Makhnev, M. S. Nirova, “On Graphs in Which the Neighborhoods of Vertices Are Edge-Regular Graphs without 3-Claws”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 4, 2023, 279–282; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S53–S55
Citation in format AMSBIB
\Bibitem{CheMakNir23}
\by M.~Chen, A.~A.~Makhnev, M.~S.~Nirova
\paper On Graphs in Which the Neighborhoods of Vertices Are Edge-Regular Graphs without 3-Claws
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 4
\pages 279--282
\mathnet{http://mi.mathnet.ru/timm2054}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-4-279-282}
\elib{https://elibrary.ru/item.asp?id=54950414}
\edn{https://elibrary.ru/fbkfyt}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 323
\issue , suppl. 1
\pages S53--S55
\crossref{https://doi.org/10.1134/S0081543823060044}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185146255}
Linking options:
  • https://www.mathnet.ru/eng/timm2054
  • https://www.mathnet.ru/eng/timm/v29/i4/p279
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024