Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 927–934
DOI: https://doi.org/10.17377/semi.2018.15.079
(Mi semr966)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

Inverse problems of graph theory: generalized quadrangles

A. A. Makhnevab, M. S. Nirovac

a N.N. Krasovsky Institute of Mathematics and Meckhanics, str. S. Kovalevskoy, 16, 620990, Ekaterinburg, Russia
b Ural Federal University
c Kabardino-Balkarian State University named after H.M. Berbekov, st. Chernyshevsky, 175, 360004, Nalchik, Russia
Full-text PDF (147 kB) Citations (1)
References:
Abstract: Graph $\Gamma_i$ for a distance-regular graph $\Gamma$ of diameter 3 can be strongly regular for $i=2$ or $i=3$. Finding parameters of $\Gamma_i$ by the intersection array of graph $\Gamma$ is a direct problem. Finding intersection array of graph $\Gamma$ by the parameters of $\Gamma_i$ is an inverse problem. Earlier direct and inverse problems have been solved by A.A. Makhnev, M.S. Nirova for $i=3$ and by A.A. Makhnev and D.V. Paduchikh for $i=2$.
In this work the inverse problem has been solved in cases when graphs $\Gamma_2$, $\Gamma_3$, $\bar \Gamma_2$ or $\bar \Gamma_3$ are pseudo-geometric for generalized quadrangle. In particular, graphs $\Gamma_2$ and $\bar \Gamma_3$ are not to be a pseudo-geometric for generalized quadrangle.
Keywords: distance regular graph, graph $\Gamma$ with strongly regular graph $\Gamma_i$.
Funding agency Grant number
Russian Science Foundation 14-11-00061-П
Received May 20, 2018, published August 22, 2018
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: A. A. Makhnev, M. S. Nirova, “Inverse problems of graph theory: generalized quadrangles”, Sib. Èlektron. Mat. Izv., 15 (2018), 927–934
Citation in format AMSBIB
\Bibitem{MakNir18}
\by A.~A.~Makhnev, M.~S.~Nirova
\paper Inverse problems of graph theory: generalized quadrangles
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 927--934
\mathnet{http://mi.mathnet.ru/semr966}
\crossref{https://doi.org/10.17377/semi.2018.15.079}
Linking options:
  • https://www.mathnet.ru/eng/semr966
  • https://www.mathnet.ru/eng/semr/v15/p927
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024