Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 1254–1259
DOI: https://doi.org/10.33048/semi.2019.16.087
(Mi semr1127)
 

This article is cited in 4 scientific papers (total in 4 papers)

Discrete mathematics and mathematical cybernetics

Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist

A. A. Makhnevab, M. M. Isakovac, M. S. Nirovac

a N.N. Krasovsky Institute of Mathematics and Meckhanics, 16, S. Kovalevskoy str., Ekaterinburg, 620990, Russia
b Ural Federal University named after the first President of Russia B.N.Yeltsin, 19, Mira str., Ekaterinburg, 620002, Russia
c Kabardino-Balkarian State University named after H.M. Berbekov, 175, Chernyshevsky str., Nalchik, 360004, Russia
Full-text PDF (144 kB) Citations (4)
References:
Abstract: Distance regular graphs $\Gamma$ of diameter 3 for which the graphs $\Gamma_2$ and $\Gamma_3$ are strongly regular, studied by M.S. Nirova. For $Q$-polynomial graphs with intersection arrays $\{69,56,10; 1,14,60\}$ and $\{119,100,15; 1, 20,105\}$ the graph $\Gamma_3$ is strongly regular and does not contain triangles. Automorphisms of graphs with these intersection arrays were found by A.A. Makhnev, M.S. Nirova and M.M. Isakova, A.A. Makhnev, respectively. The graph $\Gamma$ with the intersection array $\{74,54,15; 1,9,60\} $ also is $Q $-polynomial, and $\Gamma_3$ is a strongly regular graph with parameters $(630,111,12,21)$. It is proved in the paper that graphs with intersection arrays $\{69,56,10;1,14,60\}$, $\{74,54,15; 1,9,60\}$ and $\{119,100,15; 1,20, 105\} $ do not exist.
Keywords: distance-regular graph, triple intersection numbers.
Funding agency Grant number
Russian Science Foundation 19-71-10067
Received August 21, 2019, published September 18, 2019
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: A. A. Makhnev, M. M. Isakova, M. S. Nirova, “Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist”, Sib. Èlektron. Mat. Izv., 16 (2019), 1254–1259
Citation in format AMSBIB
\Bibitem{MakIsaNir19}
\by A.~A.~Makhnev, M.~M.~Isakova, M.~S.~Nirova
\paper Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1254--1259
\mathnet{http://mi.mathnet.ru/semr1127}
\crossref{https://doi.org/10.33048/semi.2019.16.087}
Linking options:
  • https://www.mathnet.ru/eng/semr1127
  • https://www.mathnet.ru/eng/semr/v16/p1254
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:263
    Full-text PDF :148
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024