Abstract:
We study antipodal distance-regular graphs of diameter 3 such that their group of automorphisms acts transitively on the set of pairs (a,b), where {a,b} is an edge of the graph. Hence the group of automorphisms of the graph acts 2-transitively on the set of antipodal classes, so the classification of 2-transitive permutation groups can be used. We classify arc-transitive distance-regular graphs of diameter 3 in which any two vertices with distance at most two have exactly μ common neighbors.
Keywords:
arc-transitive graphs, antipodal distance-regular graphs, groups of automorphisms.
Citation:
A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Arc-transitive distance-regular coverings of cliques with λ=μ”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 2, 2013, 237–246; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 124–134
This publication is cited in the following 11 articles:
I. T. Mukhametyanov, “Ob odnoi beskonechnoi serii dopustimykh massivov peresechenii distantsionno-regulyarnykh grafov diametra 5”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2022, no. 4, 17–30
Ludmila Yu. Tsiovkina, “Covers of complete graphs and related association schemes”, Journal of Combinatorial Theory, Series A, 191 (2022), 105646
Denis S. Krotov, “The Existence of Perfect Codes in Doob Graphs”, IEEE Trans. Inform. Theory, 66:3 (2020), 1423
A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Edge-symmetric distance-regular coverings of complete graphs: the almost simple case”, Algebra and Logic, 57:2 (2018), 141–152
Konstantin S. Efimov, Alexander A. Makhnev, “Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$”, Ural Math. J., 3:1 (2017), 27–32
A. A. Makhnev, M. M. Isakova, A. A. Tokbaeva, “Avtomorfizmy distantsionno regulyarnogo grafa s massivom peresechenii $\{64,42,1;1,21,64\}$”, Sib. elektron. matem. izv., 14 (2017), 856–863
L.Yu. Tsiovkina, “Arc-transitive antipodal distance-regular covers of complete graphs related to SU3(q)”, Discrete Mathematics, 340:2 (2017), 63
L. Yu. Tsiovkina, “On the local structure of distance-regular Mathon graphs”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 225–230
A. A. Makhnev, L. Yu. Tsiovkina, “Arc-transitive antipodal distance-regular graphs of diameter three related to $PSL_d(q)$”, Sib. elektron. matem. izv., 13 (2016), 1339–1345
L. Yu. Tsiovkina, “Two new infinite families of arc-transitive antipodal distance-regular graphs of diameter three with $\lambda =\mu $ λ = μ related to groups $Sz(q)$ S z ( q ) and $^2G_2(q)$ 2 G 2 ( q )”, J Algebr Comb, 41:4 (2015), 1079
“Makhnev Aleksandr Alekseevich (on his 60th birthday)”, Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), 1–11