Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 603–611
DOI: https://doi.org/10.17377/semi.2018.15.048
(Mi semr939)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$

A. A. Makhnevab, M. P. Golubyatnikovb

a Krasovskii Institute of Mathematics and Mechanics, 16 S.Kovalevskaya Str., 620990, Yekaterinburg, Russia
b 620990, Yekaterinburg, Russia, Ural Federal University
Full-text PDF (170 kB) Citations (1)
References:
Abstract: Prime orders automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a distance-regular graph with intersection array $\{289,216,1;1, 72,289\}$. Let nonsolvable automorphism group $G$ acts transitively on the vertex set of distance-regular graph $\Gamma$ with intersection array $\{289,216,1;1, 72,289\}$, $\bar T$ be a socle of $\bar G=G/S(G)$. Then either $\bar T\cong L_2(289)$ and $\Gamma$ is the Mathon graph or $\bar T\cong A_{29}$.
Keywords: distance-regular graph, automorphism.
Received April 10, 2018, published May 18, 2018
Bibliographic databases:
Document Type: Article
UDC: 519.17+512.54
MSC: 05C25
Language: Russian
Citation: A. A. Makhnev, M. P. Golubyatnikov, “Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$”, Sib. Èlektron. Mat. Izv., 15 (2018), 603–611
Citation in format AMSBIB
\Bibitem{MakGol18}
\by A.~A.~Makhnev, M.~P.~Golubyatnikov
\paper Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 603--611
\mathnet{http://mi.mathnet.ru/semr939}
\crossref{https://doi.org/10.17377/semi.2018.15.048}
Linking options:
  • https://www.mathnet.ru/eng/semr939
  • https://www.mathnet.ru/eng/semr/v15/p603
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :47
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024