Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 7, Pages 1045–1060
DOI: https://doi.org/10.1070/SM1996v187n07ABEH000147
(Mi sm147)
 

This article is cited in 4 scientific papers (total in 5 papers)

On pseudogeometric graphs of the partial geometries $pG_2(4,t)$

A. A. Makhnev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: An incidence system consisting of points and lines is called an $\alpha$-partial geometry of order $(s,t)$ if each line contains $s+1$ points, each point lies on $t+1$ lines (the lines intersect in at most one point), and for any point a not lying on a line $L$ there are exactly $\alpha$ lines passing through $\alpha$ and intersecting $L$ (this geometry is denoted by $pG_{\alpha }(s,t)$). The point graph of the partial geometry $pG_{\alpha }(s,t)$ is strongly regular with parameters: $v=(s+1)(1+st/\alpha )$, $k=s(t+1)$, $\lambda =(s-1)+(\alpha -1)t$ and $\mu =\alpha (t+1)$. A graph with the indicated parameters is called a pseudogeometric graph of the corresponding geometry. It is proved that a pseudogeometric graph of a partial geometry $pG_2(4,t)$ in which the $\mu$-subgraphs are regular graphs without triangles is the triangular graph $T(5)$, the quotient of the Johnson graph $J(8,4)$, or the McLaughlin graph.
Received: 11.09.1995
Russian version:
Matematicheskii Sbornik, 1996, Volume 187, Number 7, Pages 97–112
DOI: https://doi.org/10.4213/sm147
Bibliographic databases:
UDC: 519.14
MSC: Primary 05C75, 51E14; Secondary 05E30, 51A99
Language: English
Original paper language: Russian
Citation: A. A. Makhnev, “On pseudogeometric graphs of the partial geometries $pG_2(4,t)$”, Mat. Sb., 187:7 (1996), 97–112; Sb. Math., 187:7 (1996), 1045–1060
Citation in format AMSBIB
\Bibitem{Mak96}
\by A.~A.~Makhnev
\paper On pseudogeometric graphs of the~partial geometries $pG_2(4,t)$
\jour Mat. Sb.
\yr 1996
\vol 187
\issue 7
\pages 97--112
\mathnet{http://mi.mathnet.ru/sm147}
\crossref{https://doi.org/10.4213/sm147}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1404190}
\zmath{https://zbmath.org/?q=an:0868.05044}
\transl
\jour Sb. Math.
\yr 1996
\vol 187
\issue 7
\pages 1045--1060
\crossref{https://doi.org/10.1070/SM1996v187n07ABEH000147}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VW99300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030305553}
Linking options:
  • https://www.mathnet.ru/eng/sm147
  • https://doi.org/10.1070/SM1996v187n07ABEH000147
  • https://www.mathnet.ru/eng/sm/v187/i7/p97
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:372
    Russian version PDF:185
    English version PDF:16
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024