Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 4, Pages 743–756
DOI: https://doi.org/10.1070/im1997v061n04ABEH000136
(Mi im136)
 

This article is cited in 6 scientific papers (total in 7 papers)

On 2-locally Seidel graphs

A. A. Makhnev, D. V. Paduchikh

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: The $i$-neighbourhood of a vertex $a$ of a graph $\Gamma$ is the subgraph $\Gamma_i(a)$ induced by $\Gamma$ on the set of all vertices of $\Gamma$ that lie at distance $i$ from $a$. Let $\mathcal F$ denote a class of graphs. A graph $\Gamma$ is called an $i$-locally $\mathcal F$-graph if $\Gamma_i(a)$ lies in $\mathcal F$ for any vertex $a$ of $\Gamma$. In this paper we classify the connected regular graph in which the 2-neighbourhoods are Seidel graphs. (Recall that a Seidel graph is a strongly regular graph that has eigenvalue $-2$). The class of Seidel graphs consists of the complete multipartite graphs with parts of order 2, lattice and triangular graphs, as well as the Shrikhande, Chang, Petersen, Clebsch, and Schlafli graphs.
Received: 03.11.1995
Bibliographic databases:
MSC: Primary 05C75; Secondary 05C25, 51E24
Language: English
Original paper language: Russian
Citation: A. A. Makhnev, D. V. Paduchikh, “On 2-locally Seidel graphs”, Izv. Math., 61:4 (1997), 743–756
Citation in format AMSBIB
\Bibitem{MakPad97}
\by A.~A.~Makhnev, D.~V.~Paduchikh
\paper On 2-locally Seidel graphs
\jour Izv. Math.
\yr 1997
\vol 61
\issue 4
\pages 743--756
\mathnet{http://mi.mathnet.ru//eng/im136}
\crossref{https://doi.org/10.1070/im1997v061n04ABEH000136}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1480757}
\zmath{https://zbmath.org/?q=an:0889.05066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071094300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747434869}
Linking options:
  • https://www.mathnet.ru/eng/im136
  • https://doi.org/10.1070/im1997v061n04ABEH000136
  • https://www.mathnet.ru/eng/im/v61/i4/p67
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:470
    Russian version PDF:176
    English version PDF:17
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024