Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 73, Issue 6, Pages 878–885
DOI: https://doi.org/10.4213/mzm235
(Mi mzm235)
 

This article is cited in 4 scientific papers (total in 5 papers)

Ovoids and Bipartite Subgraphs in Generalized Quadrangles

A. A. Makhnev (Jr.)a, A. A. Makhnevb

a Ural State University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (212 kB) Citations (5)
References:
Abstract: A point-line incidence system is called an $\alpha$-partial geometry of order $(s,t)$ if each line contains $s + 1$ points, each point lies on $t + 1$ lines, and for any point $a$ not lying on a line $L$, there exist precisely $\alpha$ lines passing through $a$ and intersecting $L$ (the notation is $pG_\alpha(s,t)$). If $\alpha = 1$, then such a geometry is called a generalized quadrangle and denoted by $GQ(s,t)$. It is established that if a pseudogeometric graph for a generalized quadrangle $GQ(s,s^2-s)$ contains more than two ovoids, then $s = 2$. It is proved that the point graph of a generalized quadrangle GQ(4,t) contains no K 4,6-subgraphs. Finally, it is shown that if some $\mu$-subgraph of a pseudogeometric graph for a generalized quadrangle $GQ(4,t)$ contains a triangle, then $t\le6$.
Received: 04.02.2000
English version:
Mathematical Notes, 2003, Volume 73, Issue 6, Pages 829–837
DOI: https://doi.org/10.1023/A:1024053914404
Bibliographic databases:
UDC: 519.14
Language: Russian
Citation: A. A. Makhnev (Jr.), A. A. Makhnev, “Ovoids and Bipartite Subgraphs in Generalized Quadrangles”, Mat. Zametki, 73:6 (2003), 878–885; Math. Notes, 73:6 (2003), 829–837
Citation in format AMSBIB
\Bibitem{MakMak03}
\by A.~A.~Makhnev~(Jr.), A.~A.~Makhnev
\paper Ovoids and Bipartite Subgraphs in Generalized Quadrangles
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 6
\pages 878--885
\mathnet{http://mi.mathnet.ru/mzm235}
\crossref{https://doi.org/10.4213/mzm235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2010657}
\zmath{https://zbmath.org/?q=an:1056.51004}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 6
\pages 829--837
\crossref{https://doi.org/10.1023/A:1024053914404}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183962500028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347755230}
Linking options:
  • https://www.mathnet.ru/eng/mzm235
  • https://doi.org/10.4213/mzm235
  • https://www.mathnet.ru/eng/mzm/v73/i6/p878
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024