Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 4, Pages 745–753 (Mi smj2235)  

On almost good triples of vertices in edge regular graphs

V. I. Belousova, A. A. Makhnev

Institute of Mathematics and Mechanics, Ekaterinburg, Russia
Full-text PDF (285 kB) Citations (1)
References:
Abstract: Consider a connected edge regular graph $\Gamma$ with parameters $(v,k,\lambda)$ and put $b_1=k-\lambda-1$. A triple $(u,w,z)$ of vertices is called (almost) good whenever $d(u,w)=d(u,z)=2$ and $\mu(u,w)+\mu(u,z)\le2k-4b_1+3$ (and $\mu(u,w)+\mu(u,z)=2k-4b_1+4$). If $k=3b_1+\gamma$ with $\gamma\ge-2$, a triple $(u,w,z)$ is almost good, and $\Delta=[u]\cap[w]\cap[z]$then: either $|\Delta|\le2$; or $\Delta$ is a 3-clique and $\Gamma$ is a Clebsch graph; or $\Delta$ is a 3-clique, $k=16$, $b_1=6$ and $v=31$; or $\Delta$ is a 4-clique and $\Gamma$ is a Schläfli graph.
Keywords: edge regular graph, Clebsch graph, Schläfli graph, almost good triple of vertices.
Received: 01.12.2008
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 4, Pages 585–592
DOI: https://doi.org/10.1134/S0037446611040033
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: V. I. Belousova, A. A. Makhnev, “On almost good triples of vertices in edge regular graphs”, Sibirsk. Mat. Zh., 52:4 (2011), 745–753; Siberian Math. J., 52:4 (2011), 585–592
Citation in format AMSBIB
\Bibitem{BelMak11}
\by V.~I.~Belousova, A.~A.~Makhnev
\paper On almost good triples of vertices in edge regular graphs
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 4
\pages 745--753
\mathnet{http://mi.mathnet.ru/smj2235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2883211}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 4
\pages 585--592
\crossref{https://doi.org/10.1134/S0037446611040033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298649500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052017891}
Linking options:
  • https://www.mathnet.ru/eng/smj2235
  • https://www.mathnet.ru/eng/smj/v52/i4/p745
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :70
    References:56
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024