|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematical logic, algebra and number theory
Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$
A. A. Makhneva, M. M. Khamgokovab a N.N. Krasovsky Institute of Mathematics and Meckhanics,
str. S. Kovalevskoy, 4, 620990, Ekaterinburg, Russia
b Kabardino-Balkarian State University, Mira str., 16, 360000, Nalchik, Russia
Abstract:
Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms
of prime orders are studied for a hypothetical strongly regular graph with parameters $(532,156,30,52)$.
Let $\Gamma$ be a strongly regular graph with parameters $(532,156,30,52)$ and $G={\rm Aut}(\Gamma)$
be a nonsolvable group acting transitively on the vertex set of $\Gamma$. Then $\bar G=G/O_2(G)\cong J_1$,
$S(G)=O_2(G)$ is an irreducible $F_2J_1$-module, $|O_2(G)|>2$ and $\bar G_a\cong L_2(11)$.
Keywords:
strongly regular graph, automorphism group.
Received November 23, 2015, published December 4, 2015
Citation:
A. A. Makhnev, M. M. Khamgokova, “Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$”, Sib. Èlektron. Mat. Izv., 12 (2015), 930–939
Linking options:
https://www.mathnet.ru/eng/semr641 https://www.mathnet.ru/eng/semr/v12/p930
|
Statistics & downloads: |
Abstract page: | 220 | Full-text PDF : | 45 | References: | 51 |
|