Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 5, Pages 730–744
DOI: https://doi.org/10.4213/mzm11503
(Mi mzm11503)
 

This article is cited in 17 scientific papers (total in 17 papers)

Distance-Regular Shilla Graphs with $b_2=c_2$

A. A. Makhnevab, M. S. Nirovac

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
c Kabardino-Balkar State University, Nal'chik
References:
Abstract: A Shilla graph is defined as a distance-regular graph of diameter 3 with second eigenvalue $\theta_1$ equal to $a_3$. For a Shilla graph, let us put $a=a_3$ and $b=k/a$. It is proved in this paper that a Shilla graph with $b_2=c_2$ and noninteger eigenvalues has the following intersection array:
$$ \biggl\{\frac{b^2(b-1)}2\mspace{2mu}, \frac{(b-1)(b^2-b+2)}2\mspace{2mu}, \frac{b(b-1)}4\mspace{2mu};1, \frac{b(b-1)}4\mspace{2mu}, \frac{b(b-1)^2}2\biggr\}. $$
If $\Gamma$ is a $Q$-polynomial Shilla graph with $b_2=c_2$ and $b=2r$, then the graph $\Gamma$ has intersection array
$$ \{2rt(2r+1),(2r-1)(2rt+t+1),r(r+t);1,r(r+t),t(4r^2-1)\} $$
and, for any vertex $u$ in $\Gamma$, the subgraph $\Gamma_3(u)$ is an antipodal distance-regular graph with intersection array
$$ \{t(2r+1),(2r-1)(t+1),1;1,t+1,t(2r+1)\}. $$
The Shilla graphs with $b_2=c_2$ and $b=4$ are also classified in the paper.
Keywords: distance-regular graph, Shilla graph, graph automorphism.
Funding agency Grant number
Russian Science Foundation 15-11-10025
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported in part by the Russian Science Foundation (project no. 15-11-10025) (Theorems 1 and 2) and the agreement between the Ministry of Education and Science of the Russian Federation and the Ural Federal University (Agreement no. 02.A03.21.0006 from 27.08.2013) (Proposition 1).
Received: 20.12.2016
Revised: 10.04.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 5, Pages 780–792
DOI: https://doi.org/10.1134/S0001434618050103
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: A. A. Makhnev, M. S. Nirova, “Distance-Regular Shilla Graphs with $b_2=c_2$”, Mat. Zametki, 103:5 (2018), 730–744; Math. Notes, 103:5 (2018), 780–792
Citation in format AMSBIB
\Bibitem{MakNir18}
\by A.~A.~Makhnev, M.~S.~Nirova
\paper Distance-Regular Shilla Graphs with~$b_2=c_2$
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 5
\pages 730--744
\mathnet{http://mi.mathnet.ru/mzm11503}
\crossref{https://doi.org/10.4213/mzm11503}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3795120}
\elib{https://elibrary.ru/item.asp?id=32823048}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 5
\pages 780--792
\crossref{https://doi.org/10.1134/S0001434618050103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436583800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049151412}
Linking options:
  • https://www.mathnet.ru/eng/mzm11503
  • https://doi.org/10.4213/mzm11503
  • https://www.mathnet.ru/eng/mzm/v103/i5/p730
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:428
    Full-text PDF :49
    References:51
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024