|
This article is cited in 8 scientific papers (total in 8 papers)
Discrete mathematics and mathematical cybernetics
Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist
I. N. Belousova, A. A. Makhnevba a N.N. Krasovskii Institute of Mathematics and Mechanics,
16, S.Kovalevskaya st.,
Yekaterinburg, 620990, Russia
b Vyatskii Gosudarstvennyi Universitet
Abstract:
Koolen and Park obtained the list of intersection arrays for Shilla graphs with $b=3$. In particular distance-regular graph with intersectuion array $\{42,30,12;1,6,28\}$ is Shilla graphs with $b=3$. Gavrilyuk and Makhnev investigated properties of a graph with intersectuion array $\{60,45,8;1,12,50\}$. We proved that distance-regular graphs with intersectuion arrays $\{42, 30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist.
Keywords:
distance-regular graph, Shilla graph, triple intersection numbers.
Received October 10, 2018, published November 26, 2018
Citation:
I. N. Belousov, A. A. Makhnev, “Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist”, Sib. Èlektron. Mat. Izv., 15 (2018), 1506–1512
Linking options:
https://www.mathnet.ru/eng/semr1030 https://www.mathnet.ru/eng/semr/v15/p1506
|
Statistics & downloads: |
Abstract page: | 353 | Full-text PDF : | 154 | References: | 41 |
|