|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 4, Pages 167–174
(Mi timm1010)
|
|
|
|
This article is cited in 11 scientific papers (total in 11 papers)
Exceptional strongly regular graphs with eigenvalue 3
A. A. Makhnevab, D. V. Paduchikha a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Abstract:
A strongly regular graph $\Gamma$ with eigenvalue $m-1$ is called exceptional if it does not belong to the following list: (1) the union of isolated $m$-cliques, (2) a pseudogeometric graph for $pG_t(t+m-1,t)$, (3) the completion to a pseudogeometric graph for $pG_{m}(s,m-1)$, (4) a graph in the half case with parameters $(4\mu+1,2\mu,\mu-1,\mu)$, $\sqrt{4\mu+1}=m-1$. We find parameters of exceptional strongly regular graphs with nonleading eigenvalue 3.
Keywords:
strongly regular graph, eigenvalue of a graph.
Received: 17.06.2013
Citation:
A. A. Makhnev, D. V. Paduchikh, “Exceptional strongly regular graphs with eigenvalue 3”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 4, 2013, 167–174; Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 93–101
Linking options:
https://www.mathnet.ru/eng/timm1010 https://www.mathnet.ru/eng/timm/v19/i4/p167
|
Statistics & downloads: |
Abstract page: | 266 | Full-text PDF : | 63 | References: | 52 | First page: | 2 |
|