|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
O. V. Borodin, A. O. Ivanova, “Describing edges in normal plane maps having no adjacent $3$-faces”, Sib. Èlektron. Mat. Izv., 21:1 (2024), 495–500 |
2. |
O. V. Borodin, A. O. Ivanova, “Light $3$-paths in $3$-polytopes without adjacent triangles”, Sibirsk. Mat. Zh., 65:2 (2024), 249–257 |
|
2022 |
3. |
O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulations on surfaces”, Sibirsk. Mat. Zh., 63:4 (2022), 796–804 ; Siberian Math. J., 63:4 (2022), 662–669 |
1
|
|
2021 |
4. |
O. V. Borodin, A. O. Ivanova, “Tight description of faces in torus triangulations with minimum degree 5”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1475–1481 |
5. |
Ts. Ch.-D. Batueva, O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 456–463 |
6. |
O. V. Borodin, A. O. Ivanova, “A tight description of $3$-polytopes by their major $3$-paths”, Sibirsk. Mat. Zh., 62:3 (2021), 498–508 ; Siberian Math. J., 62:3 (2021), 400–408 |
7. |
O. V. Borodin, A. O. Ivanova, “Heights of minor faces in 3-polytopes”, Sibirsk. Mat. Zh., 62:2 (2021), 250–268 ; Siberian Math. J., 62:2 (2021), 199–214 |
|
2020 |
8. |
O. V. Borodin, A. O. Ivanova, “Soft 3-stars in sparse plane graphs”, Sib. Èlektron. Mat. Izv., 17 (2020), 1863–1868 |
9. |
O. V. Borodin, A. O. Ivanova, “An extension of Franklin's Theorem”, Sib. Èlektron. Mat. Izv., 17 (2020), 1516–1521 |
3
|
10. |
O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $8$”, Sib. Èlektron. Mat. Izv., 17 (2020), 496–501 |
|
2019 |
11. |
O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least $6$”, Sib. Èlektron. Mat. Izv., 16 (2019), 1334–1344 |
5
|
12. |
O. V. Borodin, A. O. Ivanova, “Low faces of restricted degree in $3$-polytopes”, Sibirsk. Mat. Zh., 60:3 (2019), 527–536 ; Siberian Math. J., 60:3 (2019), 405–411 |
13. |
O. V. Borodin, A. O. Ivanova, “Light minor $5$-stars in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 60:2 (2019), 351–359 ; Siberian Math. J., 60:2 (2019), 272–278 |
|
2018 |
14. |
O. V. Borodin, A. O. Ivanova, “Light 3-stars in sparse plane graphs”, Sib. Èlektron. Mat. Izv., 15 (2018), 1344–1352 |
1
|
15. |
V. A. Aksenov, O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $9$”, Sib. Èlektron. Mat. Izv., 15 (2018), 1174–1181 |
2
|
16. |
O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Describing neighborhoods of $5$-vertices in a class of $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 59:1 (2018), 56–64 ; Siberian Math. J., 59:1 (2018), 43–49 |
3
|
|
2017 |
17. |
O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Low and light $5$-stars in $3$-polytopes with minimum degree $5$ and restrictions on the degrees of major vertices”, Sibirsk. Mat. Zh., 58:4 (2017), 771–778 ; Siberian Math. J., 58:4 (2017), 600–605 |
7
|
18. |
O. V. Borodin, A. O. Ivanova, “The height of faces of $3$-polytopes”, Sibirsk. Mat. Zh., 58:1 (2017), 48–55 ; Siberian Math. J., 58:1 (2017), 37–42 |
4
|
|
2016 |
19. |
O. V. Borodin, A. O. Ivanova, “Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$”, Sib. Èlektron. Mat. Izv., 13 (2016), 584–591 |
7
|
20. |
O. V. Borodin, A. O. Ivanova, “Describing $4$-paths in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 57:5 (2016), 981–987 ; Siberian Math. J., 57:5 (2016), 764–768 |
6
|
21. |
O. V. Borodin, A. O. Ivanova, “Light and low $5$-stars in normal plane maps with minimum degree $5$”, Sibirsk. Mat. Zh., 57:3 (2016), 596–602 ; Siberian Math. J., 57:3 (2016), 470–475 |
14
|
|
2015 |
22. |
O. V. Borodin, A. O. Ivanova, “Heights of minor faces in triangle-free $3$-polytopes”, Sibirsk. Mat. Zh., 56:5 (2015), 982–987 ; Siberian Math. J., 56:5 (2015), 783–788 |
8
|
23. |
O. V. Borodin, A. O. Ivanova, “Each $3$-polytope with minimum degree $5$ has a $7$-cycle with maximum degree at most $15$”, Sibirsk. Mat. Zh., 56:4 (2015), 775–789 ; Siberian Math. J., 56:4 (2015), 612–623 |
5
|
24. |
O. V. Borodin, A. O. Ivanova, “The vertex-face weight of edges in $3$-polytopes”, Sibirsk. Mat. Zh., 56:2 (2015), 338–350 ; Siberian Math. J., 56:2 (2015), 275–284 |
12
|
|
2014 |
25. |
O. V. Borodin, A. O. Ivanova, “The weight of edge in 3-polytopes”, Sib. Èlektron. Mat. Izv., 11 (2014), 457–463 |
3
|
26. |
O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$”, Sibirsk. Mat. Zh., 55:1 (2014), 17–24 ; Siberian Math. J., 55:1 (2014), 12–18 |
4
|
|
2011 |
27. |
O. V. Borodin, A. O. Ivanova, “2-distance 4-coloring of planar subcubic graphs”, Diskretn. Anal. Issled. Oper., 18:2 (2011), 18–28 ; J. Appl. Industr. Math., 5:4 (2011), 535–541 |
5
|
28. |
O. V. Borodin, A. V. Kostochka, “Vertex decompositions of sparse graphs into an independent vertex set and a subgraph of maximum degree at most $1$”, Sibirsk. Mat. Zh., 52:5 (2011), 1004–1010 ; Siberian Math. J., 52:5 (2011), 796–801 |
22
|
29. |
O. V. Borodin, A. O. Ivanova, “Acyclic 5-choosability of planar graphs without 4-cycles”, Sibirsk. Mat. Zh., 52:3 (2011), 522–541 ; Siberian Math. J., 52:3 (2011), 411–425 |
15
|
30. |
O. V. Borodin, A. O. Ivanova, “Injective $(\Delta+1)$-coloring of planar graphs with girth 6”, Sibirsk. Mat. Zh., 52:1 (2011), 30–38 ; Siberian Math. J., 52:1 (2011), 23–29 |
17
|
|
2010 |
31. |
O. V. Borodin, “Acyclic 4-colorability of planar graphs without 4- and 5-cycles”, Diskretn. Anal. Issled. Oper., 17:2 (2010), 20–38 ; J. Appl. Industr. Math., 5:1 (2011), 31–43 |
12
|
32. |
O. V. Borodin, A. O. Ivanova, “Acyclic $3$-choosability of planar graphs with no cycles of length from $4$ to $11$”, Sib. Èlektron. Mat. Izv., 7 (2010), 275–283 |
8
|
|
2009 |
33. |
O. V. Borodin, “Acyclic 4-coloring of plane graphs without cycles of length 4 and 6”, Diskretn. Anal. Issled. Oper., 16:6 (2009), 3–11 ; J. Appl. Industr. Math., 4:4 (2010), 490–495 |
12
|
34. |
O. V. Borodin, “Acyclic 3-choosability of plane graphs without cycles of length from 4 to 12”, Diskretn. Anal. Issled. Oper., 16:5 (2009), 26–33 ; J. Appl. Industr. Math., 4:2 (2010), 158–162 |
15
|
35. |
O. V. Borodin, A. O. Ivanova, “Near-proper vertex 2-colorings of sparse graphs”, Diskretn. Anal. Issled. Oper., 16:2 (2009), 16–20 ; J. Appl. Industr. Math., 4:1 (2010), 21–23 |
18
|
36. |
O. V. Borodin, A. O. Ivanova, “Partitioning sparse plane graphs into two induced subgraphs of small degree”, Sib. Èlektron. Mat. Izv., 6 (2009), 13–16 |
2
|
37. |
O. V. Borodin, A. O. Ivanova, “List 2-distance $(\Delta+2)$-coloring of planar graphs with girth 6 and $\Delta\ge24$”, Sibirsk. Mat. Zh., 50:6 (2009), 1216–1224 ; Siberian Math. J., 50:6 (2009), 958–964 |
13
|
|
2008 |
38. |
O. V. Borodin, I. G. Dmitriev, A. O. Ivanova, “Высота цикла длины 4 в 1-планарных графах с минимальной степенью 5 без треугольников”, Diskretn. Anal. Issled. Oper., 15:1 (2008), 11–16 ; J. Appl. Industr. Math., 3:1 (2009), 28–31 |
10
|
39. |
O. V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, D. B. West, “Circular $(5,2)$-coloring of sparse graphs”, Sib. Èlektron. Mat. Izv., 5 (2008), 417–426 |
12
|
40. |
O. V. Borodin, A. O. Ivanova, “List $2$-arboricity of planar graphs with no triangles at distance less than two”, Sib. Èlektron. Mat. Izv., 5 (2008), 211–214 |
2
|
41. |
O. V. Borodin, A. O. Ivanova, “Planar graphs without triangular $4$-cycles are $3$-choosable”, Sib. Èlektron. Mat. Izv., 5 (2008), 75–79 |
9
|
|
2007 |
42. |
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Предписанная 2-дистанционная $(\Delta+1)$-раскраска плоских графов с заданным обхватом”, Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007), 13–30 ; J. Appl. Industr. Math., 2:3 (2008), 317–328 |
22
|
43. |
O. V. Borodin, A. O. Ivanova, A. V. Kostochka, N. N. Sheikh, “Minimax degrees of quasiplane graphs without $4$-faces”, Sib. Èlektron. Mat. Izv., 4 (2007), 435–439 |
2
|
44. |
O. V. Borodin, A. O. Ivanova, B. S. Stechkin, “Decomposing a planar graph into a forest and a subgraph of restricted maximum degree”, Sib. Èlektron. Mat. Izv., 4 (2007), 296–299 |
3
|
|
2006 |
45. |
O. V. Borodin, A. O. Ivanova, A. V. Kostochka, “Oriented 5-coloring of sparse plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006), 16–32 ; J. Appl. Industr. Math., 1:1 (2007), 9–17 |
25
|
46. |
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth $6$”, Sib. Èlektron. Mat. Izv., 3 (2006), 441–450 |
13
|
47. |
O. V. Borodin, A. N. Glebov, T. R. Jensen, A. Raspaud, “Planar graphs without triangles adjacent to cycles of length from $3$ to $9$ are $3$-colorable”, Sib. Èlektron. Mat. Izv., 3 (2006), 428–440 |
12
|
48. |
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “List $(p,q)$-coloring of sparse plane graphs”, Sib. Èlektron. Mat. Izv., 3 (2006), 355–361 |
5
|
|
2005 |
49. |
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Sufficient conditions for the 2-distance $(\Delta+1)$-colorability of planar graphs with girth 6”, Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005), 32–47 |
12
|
50. |
O. V. Borodin, A. O. Ivanova, “An oriented colouring of planar graphs with girth at least $4$”, Sib. Èlektron. Mat. Izv., 2 (2005), 239–249 |
5
|
51. |
O. V. Borodin, A. O. Ivanova, “An oriented $7$-colouring of planar graphs with girth at least $7$”, Sib. Èlektron. Mat. Izv., 2 (2005), 222–229 |
10
|
|
2004 |
52. |
O. V. Borodin, A. N. Glebov, “A sufficient condition for the 3-colorability of plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 11:1 (2004), 13–29 |
5
|
53. |
O. V. Borodin, A. N. Glebov, A. O. Ivanova, T. K. Neustroeva, V. A. Tashkinov, “Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable”, Sib. Èlektron. Mat. Izv., 1 (2004), 129–141 |
34
|
54. |
V. A. Aksenov, O. V. Borodin, A. N. Glebov, “Continuation of a $3$-coloring from a $7$-face onto a plane graph without $3$-cycles”, Sib. Èlektron. Mat. Izv., 1 (2004), 117–128 |
10
|
55. |
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “$2$-distance coloring of sparse planar graphs”, Sib. Èlektron. Mat. Izv., 1 (2004), 76–90 |
21
|
|
2003 |
56. |
V. A. Aksenov, O. V. Borodin, A. N. Glebov, “Continuation of a 3-coloring from a 6-face to a plane graph without 3-cycles”, Diskretn. Anal. Issled. Oper., Ser. 1, 10:3 (2003), 3–11 |
14
|
|
2002 |
57. |
O. V. Borodin, “Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:3 (2002), 29–39 |
14
|
58. |
V. A. Aksenov, O. V. Borodin, A. N. Glebov, “On the continuation of a 3-coloring from two vertices in a plane graph without 3-cycles”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:1 (2002), 3–26 |
7
|
59. |
O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces”, Mat. Zametki, 72:1 (2002), 35–37 ; Math. Notes, 72:1 (2002), 31–42 |
1
|
|
2001 |
60. |
O. V. Borodin, A. N. Glebov, “On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001), 34–53 |
17
|
61. |
O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel, “Minimal degrees and chromatic numbers of squares of planar graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001), 9–33 |
31
|
62. |
O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel, “The structure of plane triangulations in terms of clusters and stars”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:2 (2001), 15–39 |
22
|
63. |
S. V. Avgustinovich, O. V. Borodin, A. È. Frid, “Distributive colorings of plane triangulations of minimum degree five”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:1 (2001), 3–16 |
7
|
|
2000 |
64. |
V. A. Aksenov, O. V. Borodin, A. N. Glebov, “On a structural property of plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 7:4 (2000), 5–19 |
1
|
65. |
O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Acyclic $k$-strong coloring of maps on surfaces”, Mat. Zametki, 67:1 (2000), 36–45 ; Math. Notes, 67:1 (2000), 29–35 |
4
|
|
1999 |
66. |
O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Acyclic coloring of 1-planar graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 6:4 (1999), 20–35 |
11
|
|
1998 |
67. |
O. V. Borodin, D. V. Loparev, “The height of small faces in planar normal maps”, Diskretn. Anal. Issled. Oper., Ser. 1, 5:4 (1998), 6–17 |
10
|
68. |
O. V. Borodin, D. R. Vudal, “Weight of faces in plane maps”, Mat. Zametki, 64:5 (1998), 648–657 ; Math. Notes, 64:5 (1998), 562–570 |
15
|
|
1996 |
69. |
O. V. Borodin, “Colorings and topological representations of graphs”, Diskretn. Anal. Issled. Oper., 3:4 (1996), 3–27 |
1
|
|
1995 |
70. |
S. V. Avgustinovich, O. V. Borodin, “Neighborhoods of edges in normal cards”, Diskretn. Anal. Issled. Oper., 2:3 (1995), 3–9 |
12
|
|
1993 |
71. |
O. V. Borodin, “Structure of neighborhoods of edges in planar graphs and simultaneous coloring of vertices, edges and faces”, Mat. Zametki, 53:5 (1993), 35–47 ; Math. Notes, 53:5 (1993), 483–489 |
7
|
72. |
O. V. Borodin, “Bidegree of graph and degeneracy number”, Mat. Zametki, 53:4 (1993), 13–20 ; Math. Notes, 53:4 (1993), 367–372 |
1
|
|
1992 |
73. |
O. V. Borodin, “A structural theorem on planar graphs and its application to coloring”, Diskr. Mat., 4:1 (1992), 60–65 |
5
|
74. |
O. V. Borodin, “Minimal weight of face in plane triangulations without 4-vertices”, Mat. Zametki, 51:1 (1992), 16–19 ; Math. Notes, 51:1 (1992), 11–13 |
17
|
|
1991 |
75. |
O. V. Borodin, “Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps”, Diskr. Mat., 3:4 (1991), 24–27 |
6
|
76. |
O. V. Borodin, I. G. Dmitriev, “On a characterization of chromatically rigid polynomials”, Sibirsk. Mat. Zh., 32:1 (1991), 22–27 ; Siberian Math. J., 32:1 (1991), 17–21 |
1
|
|
1990 |
77. |
O. V. Borodin, “Generalization of a theorem of Kotzig and a prescribed coloring of the edges of planar graphs”, Mat. Zametki, 48:6 (1990), 22–28 ; Math. Notes, 48:6 (1990), 1186–1190 |
12
|
|
1989 |
78. |
O. V. Borodin, “Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs”, Mat. Zametki, 46:5 (1989), 9–12 ; Math. Notes, 46:5 (1989), 835–837 |
33
|
|
1976 |
79. |
O. V. Borodin, “A proof of Grünbaum's conjecture on the acyclic $5$-colorability of planar graphs”, Dokl. Akad. Nauk SSSR, 231:1 (1976), 18–20 |
3
|
|
|
|
2010 |
80. |
S. V. Avgustinovich, O. V. Borodin, A. V. Kostochka, V. D. Mazurov, “In memory of Dmitry Germanovich Fon-Der-Flaass”, Sib. Èlektron. Mat. Izv., 7 (2010), 1–4 |
1
|
|