Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 3, Pages 522–541 (Mi smj2217)  

This article is cited in 15 scientific papers (total in 15 papers)

Acyclic 5-choosability of planar graphs without 4-cycles

O. V. Borodinab, A. O. Ivanovac

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk
c Institute for Mathematics and Informatics, Yakutsk State University, Yakutsk
References:
Abstract: The conjecture on the acyclic 5-choosability of planar graphs (Borodin et al., 2002) as yet has been verified only for several restricted classes of graphs: those of girth at least 5 (Montassier, Ochem, and Raspaud, 2006), without 4- and 5-cycles or without 4- and 6-cycles (Montassier, Raspaud, and Wang, 2007), with neither 4-cycles nor chordal 6-cycles (Zhang and Xu, 2009), with neither 4- cycles nor two 3-cycles at distance less than 3 (Chen and Wang, 2008), and with neither 4-cycles nor intersecting 3-cycles (Chen and Raspaud, 2010). Wang and Chen (2009) proved that the planar graphs without 4-cycles are acyclically 6-choosable. We prove that a planar graph without 4-cycles is acyclically 5-choosable, which is a common strengthening of all above-mentioned results.
Keywords: graph, planar graph, coloring, acyclic coloring, list coloring.
Received: 18.07.2010
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 3, Pages 411–425
DOI: https://doi.org/10.1134/S0037446611030049
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “Acyclic 5-choosability of planar graphs without 4-cycles”, Sibirsk. Mat. Zh., 52:3 (2011), 522–541; Siberian Math. J., 52:3 (2011), 411–425
Citation in format AMSBIB
\Bibitem{BorIva11}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Acyclic 5-choosability of planar graphs without 4-cycles
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 3
\pages 522--541
\mathnet{http://mi.mathnet.ru/smj2217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2858640}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 3
\pages 411--425
\crossref{https://doi.org/10.1134/S0037446611030049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298648800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959726108}
Linking options:
  • https://www.mathnet.ru/eng/smj2217
  • https://www.mathnet.ru/eng/smj/v52/i3/p522
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :76
    References:69
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024