Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 1, Pages 48–55
DOI: https://doi.org/10.17377/smzh.2017.58.105
(Mi smj2838)
 

This article is cited in 4 scientific papers (total in 4 papers)

The height of faces of $3$-polytopes

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Ammosov North-Eastern Federal University, Yakutsk, Russia
Full-text PDF (390 kB) Citations (4)
References:
Abstract: The height of a face in a $3$-polytope is the maximum degree of the incident vertices of the face, and the height of a $3$-polytope, $h$, is the minimum height of its faces. A face is pyramidal if it is either a $4$-face incident with three $3$-vertices, or a $3$-face incident with two vertices of degree at most $4$. If pyramidal faces are allowed, then $h$ can be arbitrarily large; so we assume the absence of pyramidal faces. In 1940, Lebesgue proved that every quadrangulated $3$-polytope has $h\le11$. In 1995, this bound was lowered by Avgustinovich and Borodin to $10$. Recently, we improved it to the sharp bound $8$. For plane triangulation without $4$-vertices, Borodin (1992), confirming the Kotzig conjecture of 1979, proved that $h\le20$ which bound is sharp. Later, Borodin (1998) proved that $h\le20$ for all triangulated $3$-polytopes. Recently, we obtained the sharp bound $10$ for triangle-free $3$-polytopes. In 1996, Horňák and Jendrol' proved for arbitrarily $3$-polytopes that $h\le23$. In this paper we improve this bound to the sharp bound $20$.
Keywords: plane map, planar graph, $3$-polytope, structure properties, height of face.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-05867
16-01-00499
Ministry of Education and Science of the Russian Federation НШ-1939.2014.1
The first author was supported by the Russian Foundation for Basic Research (Grants 15-01-05867 and 16-01-00499) and the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-1939.2014.1). The second author worked within the governmental task “Organization of Scientific Research”.
Received: 01.04.2015
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 1, Pages 37–42
DOI: https://doi.org/10.1134/S0037446617010050
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 35R30
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “The height of faces of $3$-polytopes”, Sibirsk. Mat. Zh., 58:1 (2017), 48–55; Siberian Math. J., 58:1 (2017), 37–42
Citation in format AMSBIB
\Bibitem{BorIva17}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper The height of faces of $3$-polytopes
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 1
\pages 48--55
\mathnet{http://mi.mathnet.ru/smj2838}
\crossref{https://doi.org/10.17377/smzh.2017.58.105}
\elib{https://elibrary.ru/item.asp?id=29159901}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 1
\pages 37--42
\crossref{https://doi.org/10.1134/S0037446617010050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396065100005}
\elib{https://elibrary.ru/item.asp?id=29485486}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014722960}
Linking options:
  • https://www.mathnet.ru/eng/smj2838
  • https://www.mathnet.ru/eng/smj/v58/i1/p48
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :38
    References:46
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024