Abstract:
Precise upper bounds are obtained for the minimum weight of minor faces in normal plane maps and 3-polytopes with specified maximum vertex degree.
This publication is cited in the following 15 articles:
O. V. Borodin, A. O. Ivanova, “Heights of minor faces in 3-polytopes”, Siberian Math. J., 62:2 (2021), 199–214
O. V. Borodin, A. O. Ivanova, “Low faces of restricted degree in 33-polytopes”, Siberian Math. J., 60:3 (2019), 405–411
Oleg V. Borodin, Anna O. Ivanova, “Low minor faces in 3-polytopes”, Discrete Mathematics, 341:12 (2018), 3415
Borodin O.V., Ivanova A.O., Vasil'eva E.I., “A Steinberg-Like Approach to Describing Faces in 3-Polytopes”, Graphs Comb., 33:1 (2017), 63–71
Borodin O.V. Ivanova A.O., “New Results About the Structure of Plane Graphs: a Survey”, Proceedings of the 8th International Conference on Mathematical Modeling (ICMM-2017), AIP Conference Proceedings, 1907, ed. Egorov I. Popov S. Vabishchevich P. Antonov M. Lazarev N. Troeva M. Troeva M. Ivanova A. Grigorev Y., Amer Inst Physics, 2017, UNSP 030051
O. V. Borodin, A. O. Ivanova, “The height of faces of 33-polytopes”, Siberian Math. J., 58:1 (2017), 37–42
Borodin O.V., Ivanova A.O., “The weight of faces in normal plane maps”, Discrete Math., 339:10 (2016), 2573–2580
Borodin O.V., Ivanova A.O., “On the weight of minor faces in triangle-free polytopes”, Discuss. Math. Graph Theory, 36:3 (2016), 603–619
A. O. Ivanova, “Opisanie granei v 3-mnogogrannikakh bez vershin stepenei ot 4 do 9”, Matematicheskie zametki SVFU, 23:3 (2016), 46–54
O. V. Borodin, A. O. Ivanova, “The vertex-face weight of edges in 33-polytopes”, Siberian Math. J., 56:2 (2015), 275–284
O. V. Borodin, A. O. Ivanova, “Heights of minor faces in triangle-free 33-polytopes”, Siberian Math. J., 56:5 (2015), 783–788
Borodin O.V. Ivanova A.O., “Describing 3-Faces in Normal Plane Maps with Minimum Degree 4”, Discrete Math., 313:23 (2013), 2841–2847
Radoicic R. Toth G., “The Discharging Method in Combinatorial Geometry and the Pach-Sharir Conjecture”, Surveys on Discrete and Computational Geometry: Twenty Years Later, Contemporary Mathematics, 453, ed. Goodman J. Pach J. Pollack R., Amer Mathematical Soc, 2008, 319–342
Broersma, H, “A general framework for coloring problems: Old results, new results, and open problems”, Combinatorial Geometry and Graph Theory, 3330 (2005), 65