Loading [MathJax]/jax/output/CommonHTML/jax.js
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 1, Pages 30–38 (Mi smj2175)  

This article is cited in 17 scientific papers (total in 17 papers)

Injective (Δ+1)-coloring of planar graphs with girth 6

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Institute for Mathematics and Informatics, Yakutsk State University, Yakutsk
References:
Abstract: A vertex coloring of a graph G is called injective if every two vertices joined by a path of length 2 get different colors. The minimum number χi(G) of the colors required for an injective coloring of a graph G is clearly not less than the maximum degree Δ(G) of G. There exist planar graphs with girth g6 and χi=Δ+1 for any Δ2. We prove that every planar graph with Δ18 and g6 has χiΔ+1.
Keywords: planar graph, injective coloring, girth.
Received: 03.02.2010
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 1, Pages 23–29
DOI: https://doi.org/10.1134/S0037446606010034
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “Injective (Δ+1)-coloring of planar graphs with girth 6”, Sibirsk. Mat. Zh., 52:1 (2011), 30–38; Siberian Math. J., 52:1 (2011), 23–29
Citation in format AMSBIB
\Bibitem{BorIva11}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Injective $(\Delta+1)$-coloring of planar graphs with girth~6
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 1
\pages 30--38
\mathnet{http://mi.mathnet.ru/smj2175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2810248}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 1
\pages 23--29
\crossref{https://doi.org/10.1134/S0037446606010034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288172400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952430442}
Linking options:
  • https://www.mathnet.ru/eng/smj2175
  • https://www.mathnet.ru/eng/smj/v52/i1/p30
  • This publication is cited in the following 17 articles:
    1. Ying Chen, Lan Tao, Li Zhang, “Injective Δ+2 Coloring of Planar Graph Without Short Cycles”, Acta Math. Appl. Sin. Engl. Ser., 39:4 (2023), 1009  crossref
    2. Qiming Fang, Li Zhang, “Sharp upper bound of injective coloring of planar graphs with girth at least 5”, J Comb Optim, 44:2 (2022), 1161  crossref
    3. Yuehua B., Chentao Q., Junlei Zh., Ting X., “Injective Coloring of Planar Graphs”, Theor. Comput. Sci., 857 (2021), 114–122  crossref  mathscinet  zmath  isi  scopus
    4. Bu Yuehua, Qi Chentao, Zhu Junlei, Lecture Notes in Computer Science, 12290, Algorithmic Aspects in Information and Management, 2020, 492  crossref
    5. Mozafari-Nia M., Omoomi B., “Injective Chromatic Number of Outerplanar Graphs”, Taiwan. J. Math., 22:6 (2018), 1309–1320  crossref  mathscinet  zmath  isi  scopus
    6. Bu Yu., Wang Ch., Yang Sh., “List Injective Coloring of Planar Graphs”, ARS Comb., 141 (2018), 191–211  mathscinet  zmath  isi
    7. Bu Yu., Qi Ch., “Injective Edge Coloring of Sparse Graphs”, Discret. Math. Algorithms Appl., 10:2 (2018), 1850022  crossref  mathscinet  isi  scopus
    8. W. Dong, B. Xu, “2-distance coloring of planar graphs with girth 5”, J. Comb. Optim., 34:4 (2017), 1302–1322  crossref  mathscinet  zmath  isi  scopus
    9. H.-Yu. Chen, J.-L. Wu, “List injective coloring of planar graphs with girth G6”, Discrete Math., 339:12 (2016), 3043–3051  crossref  mathscinet  zmath  isi  scopus
    10. Yu. Bu, K. Lu, Sh. Yang, “Two smaller upper bounds of list injective chromatic number”, J. Comb. Optim., 29:2 (2015), 373–388  crossref  mathscinet  zmath  isi  scopus
    11. B. Luzar, R. Skrekovski, “Counterexamples to a conjecture on injective colorings”, ARS Math. Contemp., 8:2 (2015), 291–295  crossref  mathscinet  zmath  isi  elib
    12. M. Bonamy, B. Leveque, A. Pinlou, “Graphs with maximum degree Δ17 and maximum average degree less than 3 are list 2-distance (Δ+2)-colorable”, Discrete Math., 317 (2014), 19–32  crossref  mathscinet  zmath  isi  elib  scopus
    13. YUEHUA BU, SHENG YANG, “LIST INJECTIVE COLORING OF PLANAR GRAPHS WITH GIRTH g ≥ 5”, Discrete Math. Algorithm. Appl., 06:01 (2014), 1450006  crossref
    14. O. V. Borodin, “Colorings of plane graphs: a survey”, Discrete Math., 313:4 (2013), 517–539  crossref  mathscinet  zmath  isi  elib  scopus
    15. Yu. Bu, K. Lu, “List injective coloring of planar graphs with girth 5,6,8”, Discrete Appl. Math., 161:10-11 (2013), 1367–1377  crossref  mathscinet  zmath  isi  elib  scopus
    16. W. Dong, W. Lin, “Injective coloring of planar graphs with girth 6”, Discrete Math., 313:12 (2013), 1302–1311  crossref  mathscinet  zmath  isi  elib  scopus
    17. YUEHUA BU, KAI LU, “INJECTIVE COLORING OF PLANAR GRAPHS WITH GIRTH 7”, Discrete Math. Algorithm. Appl., 04:02 (2012), 1250034  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:448
    Full-text PDF :112
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025