Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 1, Pages 30–38 (Mi smj2175)  

This article is cited in 17 scientific papers (total in 17 papers)

Injective $(\Delta+1)$-coloring of planar graphs with girth 6

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Institute for Mathematics and Informatics, Yakutsk State University, Yakutsk
References:
Abstract: A vertex coloring of a graph $G$ is called injective if every two vertices joined by a path of length 2 get different colors. The minimum number $\chi_i(G)$ of the colors required for an injective coloring of a graph $G$ is clearly not less than the maximum degree $\Delta(G)$ of $G$. There exist planar graphs with girth $g\ge6$ and $\chi_i=\Delta+1$ for any $\Delta\ge2$. We prove that every planar graph with $\Delta\ge18$ and $g\ge6$ has $\chi_i\le\Delta+1$.
Keywords: planar graph, injective coloring, girth.
Received: 03.02.2010
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 1, Pages 23–29
DOI: https://doi.org/10.1134/S0037446606010034
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “Injective $(\Delta+1)$-coloring of planar graphs with girth 6”, Sibirsk. Mat. Zh., 52:1 (2011), 30–38; Siberian Math. J., 52:1 (2011), 23–29
Citation in format AMSBIB
\Bibitem{BorIva11}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Injective $(\Delta+1)$-coloring of planar graphs with girth~6
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 1
\pages 30--38
\mathnet{http://mi.mathnet.ru/smj2175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2810248}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 1
\pages 23--29
\crossref{https://doi.org/10.1134/S0037446606010034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288172400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952430442}
Linking options:
  • https://www.mathnet.ru/eng/smj2175
  • https://www.mathnet.ru/eng/smj/v52/i1/p30
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :95
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024