Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2009, Volume 6, Pages 13–16 (Mi semr53)  

This article is cited in 2 scientific papers (total in 2 papers)

Research papers

Partitioning sparse plane graphs into two induced subgraphs of small degree

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Institute for Mathematics and Informatics, Yakutsk State University
Full-text PDF (711 kB) Citations (2)
References:
Abstract: A graph $G$ is said to be $(a,b)$-partitionable for positive integers $a$, $b$ if its vertices can be partitioned into subsets $V_1$ and $V_2$ such that in $G[V_1]$ any path contains at most a vertices and in $G[V_2]$ any path contains at most $b$ vertices. We prove that every planar graph of girth $8$ is $(2,2)$-partitionable.
Keywords: planar graph, coloring, vertex partition.
Received January 11, 2009, published January 26, 2009
Bibliographic databases:
Document Type: Article
UDC: 519.172.2
MSC: 05C15
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “Partitioning sparse plane graphs into two induced subgraphs of small degree”, Sib. Èlektron. Mat. Izv., 6 (2009), 13–16
Citation in format AMSBIB
\Bibitem{BorIva09}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Partitioning sparse plane graphs into two induced subgraphs of small degree
\jour Sib. \`Elektron. Mat. Izv.
\yr 2009
\vol 6
\pages 13--16
\mathnet{http://mi.mathnet.ru/semr53}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586676}
Linking options:
  • https://www.mathnet.ru/eng/semr53
  • https://www.mathnet.ru/eng/semr/v6/p13
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :56
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024