Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2006, Volume 3, Pages 428–440 (Mi semr218)  

This article is cited in 12 scientific papers (total in 12 papers)

Research papers

Planar graphs without triangles adjacent to cycles of length from $3$ to $9$ are $3$-colorable

O. V. Borodina, A. N. Glebova, T. R. Jensenb, A. Raspaudc

a Institute of Mathematics, Novosibirsk, Russia
b Alpen-Adria Universität Klagenfurt, Institut für Mathematik, Austria
c Université Bordeaux I, France
References:
Abstract: Planar graphs without triangles adjacent to cycles of length from $3$ to $9$ are proved to be $3$-colorable, which extends Grötzsch's theorem. We conjecture that planar graphs without $3$-cycles adjacent to cycles of length $3$ or $5$ are $3$-colorable.
Received December 14, 2006, published December 23, 2006
Bibliographic databases:
Document Type: Article
UDC: 519.172.2
MSC: 05C15
Language: English
Citation: O. V. Borodin, A. N. Glebov, T. R. Jensen, A. Raspaud, “Planar graphs without triangles adjacent to cycles of length from $3$ to $9$ are $3$-colorable”, Sib. Èlektron. Mat. Izv., 3 (2006), 428–440
Citation in format AMSBIB
\Bibitem{BorGleJen06}
\by O.~V.~Borodin, A.~N.~Glebov, T.~R.~Jensen, A.~Raspaud
\paper Planar graphs without triangles adjacent to cycles of length from~$3$ to~$9$ are $3$-colorable
\jour Sib. \`Elektron. Mat. Izv.
\yr 2006
\vol 3
\pages 428--440
\mathnet{http://mi.mathnet.ru/semr218}
\zmath{https://zbmath.org/?q=an:1119.05037}
Linking options:
  • https://www.mathnet.ru/eng/semr218
  • https://www.mathnet.ru/eng/semr/v3/p428
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024