Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 4, Pages 771–778
DOI: https://doi.org/10.17377/smzh.2017.58.405
(Mi smj2896)
 

This article is cited in 7 scientific papers (total in 7 papers)

Low and light $5$-stars in $3$-polytopes with minimum degree $5$ and restrictions on the degrees of major vertices

O. V. Borodin, A. O. Ivanova, D. V. Nikiforov

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (448 kB) Citations (7)
References:
Abstract: In 1940, in attempts to solve the Four Color Problem, Henry Lebesgue gave an approximate description of the neighborhoods of $5$-vertices in the class $\mathbf P_5$ of 3-polytopes with minimum degree $5$. This description depends on $32$ main parameters. Very few precise upper bounds on these parameters have been obtained as yet, even for restricted subclasses in $\mathbf P_5$. Given a $3$-polytope $P$, denote the minimum of the maximum degrees (height) of the neighborhoods of $5$-vertices (minor $5$-stars) in $P$ by $h(P)$. Jendrol'and Madaras in 1996 showed that if a polytope $P$ in $\mathbf P_5$ is allowed to have a $5$-vertex adjacent to four $5$-vertices (called a minor $(5,5,5,5,\infty)$-star), then $h(P)$ can be arbitrarily large. For each $P^*$ in $\mathbf P_5$ with neither vertices of the degree from $6$ to $8$ nor minor $(5,5,5,5,\infty)$-star, it follows from Lebesgue's Theorem that $h(P^*)\le17$. We prove in particular that every such polytope $P^*$ satisfies $h(P^*)\le12$, and this bound is sharp. This result is best possible in the sense that if vertices of one of degrees in $\{6,7,8\}$ are allowed but those of the other two forbidden, then the height of minor $5$-stars in $\mathbf P_5$ under the absence of minor $(5,5,5,5,\infty)$-stars can reach $15$, $17$, or $14$, respectively.
Keywords: planar map, planar graph, $3$-polytope, structural properties, $5$-star, height, weight.
Funding agency Grant number
Russian Science Foundation 16-11-10054
The authors were funded by the Russian Science Foundation (Grant 16-11-10054).
Received: 20.10.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 4, Pages 600–605
DOI: https://doi.org/10.1134/S003744661704005X
Bibliographic databases:
Document Type: Article
UDC: 519.172.2
MSC: 35R30
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Low and light $5$-stars in $3$-polytopes with minimum degree $5$ and restrictions on the degrees of major vertices”, Sibirsk. Mat. Zh., 58:4 (2017), 771–778; Siberian Math. J., 58:4 (2017), 600–605
Citation in format AMSBIB
\Bibitem{BorIvaNik17}
\by O.~V.~Borodin, A.~O.~Ivanova, D.~V.~Nikiforov
\paper Low and light $5$-stars in $3$-polytopes with minimum degree~$5$ and restrictions on the degrees of major vertices
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 4
\pages 771--778
\mathnet{http://mi.mathnet.ru/smj2896}
\crossref{https://doi.org/10.17377/smzh.2017.58.405}
\elib{https://elibrary.ru/item.asp?id=29947448}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 4
\pages 600--605
\crossref{https://doi.org/10.1134/S003744661704005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408727100005}
\elib{https://elibrary.ru/item.asp?id=31080377}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85028565991}
Linking options:
  • https://www.mathnet.ru/eng/smj2896
  • https://www.mathnet.ru/eng/smj/v58/i4/p771
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :32
    References:41
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024