Loading [MathJax]/jax/output/CommonHTML/jax.js
Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, Ser. 1, 2007, Volume 14, Issue 3, Pages 13–30 (Mi da203)  

This article is cited in 22 scientific papers (total in 22 papers)

Предписанная 2-дистанционная (Δ+1)-раскраска плоских графов с заданным обхватом

O. V. Borodina, A. O. Ivanovab, T. K. Neustroevab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Institute for Mathematics and Informatics, Yakutsk State University
References:
Received: 13.04.2007
English version:
Journal of Applied and Industrial Mathematics, 2008, Volume 2, Issue 3, Pages 317–328
DOI: https://doi.org/10.1134/S1990478908030034
Bibliographic databases:
UDC: 519.172
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Предписанная 2-дистанционная (Δ+1)-раскраска плоских графов с заданным обхватом”, Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007), 13–30; J. Appl. Industr. Math., 2:3 (2008), 317–328
Citation in format AMSBIB
\Bibitem{BorIvaNeu07}
\by O.~V.~Borodin, A.~O.~Ivanova, T.~K.~Neustroeva
\paper Предписанная 2-дистанционная $(\Delta+1)$-раскраска плоских графов с~заданным обхватом
\jour Diskretn. Anal. Issled. Oper., Ser.~1
\yr 2007
\vol 14
\issue 3
\pages 13--30
\mathnet{http://mi.mathnet.ru/da203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2391915}
\zmath{https://zbmath.org/?q=an:1249.05114}
\transl
\jour J. Appl. Industr. Math.
\yr 2008
\vol 2
\issue 3
\pages 317--328
\crossref{https://doi.org/10.1134/S1990478908030034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52749098084}
Linking options:
  • https://www.mathnet.ru/eng/da203
  • https://www.mathnet.ru/eng/da/v14/s1/i3/p13
  • This publication is cited in the following 22 articles:
    1. Hoang La, Mickael Montassier, “2-Distance (Δ + 1)-coloring of sparse graphs using the potential method”, Discrete Mathematics, 348:1 (2025), 114292  crossref
    2. Yin-dong Jin, Lian-ying Miao, “List 2-distance Coloring of Planar Graphs with Girth Five”, Acta Math. Appl. Sin. Engl. Ser., 38:3 (2022), 540  crossref
    3. La H., Montassier M., Pinlou A., Valicov P., “R-Hued (R+1)-Coloring of Planar Graphs With Girth At Least 8 For R >= 9”, Eur. J. Comb., 91 (2021), 103219  crossref  mathscinet  isi  scopus
    4. Hoang La, Mickael Montassier, Trends in Mathematics, 14, Extended Abstracts EuroComb 2021, 2021, 345  crossref
    5. Bonamy M., Leveque B., Pinlou A., “List Coloring the Square of Sparse Graphs with Large Degree”, Eur. J. Comb., 41 (2014), 128–137  crossref  mathscinet  zmath  isi  elib  scopus
    6. Bonamy M., Leveque B., Pinlou A., “Graphs with Maximum Degree Delta >= 17 and Maximum Average Degree Less Than 3 Are List 2-Distance (Delta+2)-Colorable”, Discrete Math., 317 (2014), 19–32  crossref  mathscinet  zmath  isi  elib  scopus
    7. Cranston D.W. Skrekovski R., “Sufficient Sparseness Conditions for G(2) to Be (Delta+1)-Choosable, When Delta >= 5”, Discrete Appl. Math., 162 (2014), 167–176  crossref  mathscinet  zmath  isi  elib  scopus
    8. Zhu H., Hou L., Chen W., Lu X., “The l(P, Q)-Labelling of Planar Graphs Without 4-Cycles”, Discrete Appl. Math., 162 (2014), 355–363  crossref  mathscinet  zmath  isi  elib  scopus
    9. Bonamy M. Leveque B. Pinlou A., “2-Distance Coloring of Sparse Graphs”, J. Graph Theory, 77:3 (2014), 190–218  crossref  mathscinet  zmath  isi  elib  scopus
    10. Borodin O.V., “Colorings of Plane Graphs: a Survey”, Discrete Math., 313:4 (2013), 517–539  crossref  mathscinet  zmath  isi  elib  scopus
    11. Bu Yu., Lu K., “List Injective Coloring of Planar Graphs with Girth 5, 6, 8”, Discrete Appl. Math., 161:10-11 (2013), 1367–1377  crossref  mathscinet  zmath  isi  elib  scopus
    12. Weifan Wang, Yuehua Bu, Handbook of Combinatorial Optimization, 2013, 2095  crossref
    13. Borodin O.V., Ivanova A.O., Montassier M., Raspaud A., “(k, 1)-coloring of sparse graphs”, Discrete Math, 312:6 (2012), 1128–1135  crossref  mathscinet  zmath  isi  elib  scopus
    14. Li R., Xu B., “Injective choosability of planar graphs of girth five and six”, Discrete Math, 312:6 (2012), 1260–1265  crossref  mathscinet  zmath  isi  elib  scopus
    15. Borodin O.V., Ivanova A.O., “List 2-facial 5-colorability of plane graphs with girth at least 12”, Discrete Math, 312:2 (2012), 306–314  crossref  mathscinet  zmath  isi  elib  scopus
    16. Borodin O.V., Ivanova A.O., “List injective colorings of planar graphs”, Discrete Math., 311:2-3 (2011), 154–165  crossref  mathscinet  zmath  isi  elib  scopus
    17. Marthe Bonamy, Benjamin Lévêque, Alexandre Pinlou, “2-distance coloring of sparse graphs”, Electronic Notes in Discrete Mathematics, 38 (2011), 155  crossref
    18. A. O. Ivanova, “Predpisannaya 2-distantsionnaya (Δ+1)-raskraska ploskikh grafov s obkhvatom ne menee 7”, Diskretn. analiz i issled. oper., 17:5 (2010), 22–36  mathnet  mathscinet  zmath
    19. Cranston D.W., Kim Seog-Jin, Yu Gexin, “Injective colorings of sparse graphs”, Discrete Math., 310:21 (2010), 2965–2973  crossref  mathscinet  zmath  isi  elib  scopus
    20. O. V. Borodin, A. O. Ivanova, “List 2-distance (Δ+2)-coloring of planar graphs with girth 6 and Δ24”, Siberian Math. J., 50:6 (2009), 958–964  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:448
    Full-text PDF :93
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025