Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 584–591
DOI: https://doi.org/10.17377/semi.2016.13.045
(Mi semr695)
 

This article is cited in 7 scientific papers (total in 7 papers)

Discrete mathematics and mathematical cybernetics

Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Ammosov North-Eastern Federal University, str. Kulakovskogo, 48, 677000, Yakutsk, Russia
Full-text PDF (656 kB) Citations (7)
References:
Abstract: In 1940, in attempts to solve the Four Color Problem, Henry Lebesgue gave an approximate description of the neighborhoods of $5$-vertices in the class $\mathbf{P}_5$ of $3$-polytopes with minimum degree $5$.
Given a $3$-polytope $P$, by $w(P)$ ($h(P)$) we denote the minimum degree-sum (minimum of the maximum degrees) of the neighborhoods of $5$-vertices in $P$.
A $5^*$-vertex is a $5$-vertex adjacent to four $5$-vertices. It is known that if a polytope $P$ in $\mathbf{P}_5$ has a $5^*$-vertex, then $h(P)$ can be arbitrarily large.
For each $P$ without vertices of degrees from $6$ to $9$ and $5^*$-vertices in $\mathbf{P}_5$, it follows from Lebesgue's Theorem that $w(P)\le 44$ and $h(P)\le 14$.
In this paper, we prove that every such polytope $P$ satisfies $w(P)\le 42$ and $h(P)\le 12$, where both bounds are tight.
Keywords: planar map, planar graph, $3$-polytope, structural properties, height, weight.
Received May 18, 2016, published June 30, 2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: O. V. Borodin, A. O. Ivanova, “Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$”, Sib. Èlektron. Mat. Izv., 13 (2016), 584–591
Citation in format AMSBIB
\Bibitem{BorIva16}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree~$5$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 584--591
\mathnet{http://mi.mathnet.ru/semr695}
\crossref{https://doi.org/10.17377/semi.2016.13.045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407781100045}
Linking options:
  • https://www.mathnet.ru/eng/semr695
  • https://www.mathnet.ru/eng/semr/v13/p584
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :47
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024