Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 4, Pages 796–804
DOI: https://doi.org/10.33048/smzh.2022.63.406
(Mi smj7693)
 

This article is cited in 1 scientific paper (total in 1 paper)

Combinatorial structure of faces in triangulations on surfaces

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b North-Eastern Federal University named after M. K. Ammosov, Yakutsk
Full-text PDF (329 kB) Citations (1)
References:
Abstract: The degree $d(x)$ of a vertex or face $x$ in a graph $G$ on the plane or other orientable surface is the number of incident edges. A face $f=v_1\ldots v_{d(f)}$ is of type $(k_1,k_2,\dots)$ if $d(v_i)\le k_i$ whenever $1\le i\le d(f)$. We denote the minimum vertex-degree of $G$ by $\delta$. The purpose of our paper is to prove that every triangulation with $\delta\ge4$ of the torus, as well as of large enough such a triangulation of any fixed orientable surface of higher genus has a face of one of the types $(4,4,\infty)$, $(4,6,12)$, $(4,8,8)$, $(5,5,8)$, $(5,6,7)$, or $(6,6,6)$, where all parameters are best possible.
Keywords: plane graph, surface, genus, triangulation, structure, face.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0017
FSRG-2020-0006
Borodin was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant FWNF–2022–0017). Ivanova was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant FSRG–2020–0006).
Received: 31.12.2021
Revised: 17.01.2022
Accepted: 10.02.2022
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 4, Pages 662–669
DOI: https://doi.org/10.1134/S0037446622040061
Document Type: Article
UDC: 519.17
MSC: 35R30
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulations on surfaces”, Sibirsk. Mat. Zh., 63:4 (2022), 796–804; Siberian Math. J., 63:4 (2022), 662–669
Citation in format AMSBIB
\Bibitem{BorIva22}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Combinatorial structure of faces in triangulations on surfaces
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 4
\pages 796--804
\mathnet{http://mi.mathnet.ru/smj7693}
\crossref{https://doi.org/10.33048/smzh.2022.63.406}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 4
\pages 662--669
\crossref{https://doi.org/10.1134/S0037446622040061}
Linking options:
  • https://www.mathnet.ru/eng/smj7693
  • https://www.mathnet.ru/eng/smj/v63/i4/p796
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :23
    References:26
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024