Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 4, Pages 775–789
DOI: https://doi.org/10.17377/smzh.2015.56.405
(Mi smj2677)
 

This article is cited in 5 scientific papers (total in 5 papers)

Each $3$-polytope with minimum degree $5$ has a $7$-cycle with maximum degree at most $15$

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Ammosov North-Eastern Federal University, Yakutsk, Russia
References:
Abstract: Let $\varphi_P(C_7)$ ($\varphi_T(C_7)$) be the minimum integer $k$ with the property that each $3$-polytope (respectively, each plane triangulation) with minimum degree $5$ has a $7$-cycle with all vertices of degree at most $k$. In 1999, Jendrol', Madaras, Soták, and Tuza proved that $15\le\varphi_T(C_7)\le17$. It is also known due to Madaras, Škrekovski, and Voss (2007) that $\varphi_P(C_7)\le359$.
We prove that $\varphi_P(C_7)=\varphi_T(C_7)=15$, which answers a question of Jendrol' et al. (1999).
Keywords: plane graph, structural properties, $3$-polytope, height.
Received: 16.11.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 4, Pages 612–623
DOI: https://doi.org/10.1134/S0037446615040059
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “Each $3$-polytope with minimum degree $5$ has a $7$-cycle with maximum degree at most $15$”, Sibirsk. Mat. Zh., 56:4 (2015), 775–789; Siberian Math. J., 56:4 (2015), 612–623
Citation in format AMSBIB
\Bibitem{BorIva15}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Each $3$-polytope with minimum degree~$5$ has a~$7$-cycle with maximum degree at most~$15$
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 4
\pages 775--789
\mathnet{http://mi.mathnet.ru/smj2677}
\crossref{https://doi.org/10.17377/smzh.2015.56.405}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492870}
\elib{https://elibrary.ru/item.asp?id=24817475}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 4
\pages 612--623
\crossref{https://doi.org/10.1134/S0037446615040059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359802500005}
\elib{https://elibrary.ru/item.asp?id=24006325}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939142654}
Linking options:
  • https://www.mathnet.ru/eng/smj2677
  • https://www.mathnet.ru/eng/smj/v56/i4/p775
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024