Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 5, Pages 981–987
DOI: https://doi.org/10.17377/smzh.2016.57.504
(Mi smj2799)
 

This article is cited in 6 scientific papers (total in 6 papers)

Describing $4$-paths in $3$-polytopes with minimum degree $5$

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Ammosov North-Eastern Federal University, Yakutsk, Russia
Full-text PDF (553 kB) Citations (6)
References:
Abstract: Back in 1922, Franklin proved that each $3$-polytope with minimum degree $5$ has a $5$-vertex adjacent to two vertices of degree at most $6$, which is tight. This result has been extended and refined in several directions. In particular, Jendrol' and Madaras (1996) ensured a $4$-path with the degree-sum at most $23$. The purpose of this note is to prove that each 3-polytope with minimum degree $5$ has a $(6,5,6,6)$-path or $(5,5,5,7)$-path, which is tight and refines both above mentioned results.
Keywords: planar graph, plane map, structure properties, $3$-polytope, $4$-path.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00499
15-01-05867
The first author was supported by the Russian Foundation for Basic Research (Grants 15-01-05867 and 16-01-00499) and the second author worked within the governmental task “Organization of Scientific Research”.
Received: 23.11.2015
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 5, Pages 764–768
DOI: https://doi.org/10.1134/S0037446616050049
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “Describing $4$-paths in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 57:5 (2016), 981–987; Siberian Math. J., 57:5 (2016), 764–768
Citation in format AMSBIB
\Bibitem{BorIva16}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Describing $4$-paths in $3$-polytopes with minimum degree~$5$
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 5
\pages 981--987
\mathnet{http://mi.mathnet.ru/smj2799}
\crossref{https://doi.org/10.17377/smzh.2016.57.504}
\elib{https://elibrary.ru/item.asp?id=27380092}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 5
\pages 764--768
\crossref{https://doi.org/10.1134/S0037446616050049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386780100004}
\elib{https://elibrary.ru/item.asp?id=27587236}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992360858}
Linking options:
  • https://www.mathnet.ru/eng/smj2799
  • https://www.mathnet.ru/eng/smj/v57/i5/p981
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :56
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024