Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2011, Volume 52, Number 5, Pages 1004–1010 (Mi smj2253)  

This article is cited in 22 scientific papers (total in 22 papers)

Vertex decompositions of sparse graphs into an independent vertex set and a subgraph of maximum degree at most $1$

O. V. Borodinab, A. V. Kostochkaac

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c University of Illinois, Urbana, USA
References:
Abstract: A graph $G$ is $(1,0)$-colorable if its vertex set can be partitioned into subsets $V_1$ and $V_0$ so that in $G[V_1]$ every vertex has degree at most $1$, while $G[V_0]$ is edgeless. We prove that every graph with maximum average degree at most $\frac{12}5$ is $(1,0)$0)-colorable. In particular, every planar graph with girth at least $12$ is $(1,0)$-colorable. On the other hand, we construct graphs with the maximum average degree arbitrarily close (from above) to $\frac{12}5$ which are not $(1,0)$-colorable.
In fact, we prove a stronger result by establishing the best possible sufficient condition for the $(1,0)$-colorability of a graph $G$ in terms of the minimum, $Ms(G)$, of $6|V(A)|-5|E(A)|$ over all subgraphs $A$ of $G$. Namely, every graph $G$ with $Ms(G)\ge-2$ is proved to be $(1,0)$-colorable, and we construct an infinite series of non-$(1,0)$-colorable graphs $G$ with $Ms(G)=-3$.
Keywords: planar graphs, coloring, girth.
Received: 15.07.2010
English version:
Siberian Mathematical Journal, 2011, Volume 52, Issue 5, Pages 796–801
DOI: https://doi.org/10.1134/S0037446611050041
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: O. V. Borodin, A. V. Kostochka, “Vertex decompositions of sparse graphs into an independent vertex set and a subgraph of maximum degree at most $1$”, Sibirsk. Mat. Zh., 52:5 (2011), 1004–1010; Siberian Math. J., 52:5 (2011), 796–801
Citation in format AMSBIB
\Bibitem{BorKos11}
\by O.~V.~Borodin, A.~V.~Kostochka
\paper Vertex decompositions of sparse graphs into an independent vertex set and a~subgraph of maximum degree at most~$1$
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 5
\pages 1004--1010
\mathnet{http://mi.mathnet.ru/smj2253}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2908122}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 5
\pages 796--801
\crossref{https://doi.org/10.1134/S0037446611050041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298650500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155142461}
Linking options:
  • https://www.mathnet.ru/eng/smj2253
  • https://www.mathnet.ru/eng/smj/v52/i5/p1004
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024