Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 2, Pages 338–350 (Mi smj2641)  

This article is cited in 12 scientific papers (total in 12 papers)

The vertex-face weight of edges in $3$-polytopes

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b North-Eastern Federal University named after M. K. Ammosov, Yakutsk, Russia
References:
Abstract: The weight $w(e)$ of an edge $e$ in a $3$-polytope is the maximum degree-sum of the two vertices and two faces incident with $e$. In 1940, Lebesgue proved that each $3$-polytope without the so-called pyramidal edges has an edge $e$ with $w(e)\le21$. In 1995, this upper bound was improved to 20 by Avgustinovich and Borodin. Note that each edge of the $n$-pyramid is pyramidal and has weight $n+9$. Recently, we constructed a $3$-polytope without pyramidal edges satisfying $w(e)\ge18$ for each $e$. The purpose of this paper is to prove that each $3$-polytope without pyramidal edges has an edge $e$ with $w(e)\le18$. In other terms, this means that each plane quadrangulation without a face incident with three vertices of degree $3$ has a face with the vertex degree-sum at most $18$, which is tight.
Keywords: plane maps, plane graph, $3$-polytope, structural properties, weight of edge.
Received: 26.06.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 2, Pages 275–284
DOI: https://doi.org/10.1134/S003744661502007X
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “The vertex-face weight of edges in $3$-polytopes”, Sibirsk. Mat. Zh., 56:2 (2015), 338–350; Siberian Math. J., 56:2 (2015), 275–284
Citation in format AMSBIB
\Bibitem{BorIva15}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper The vertex-face weight of edges in $3$-polytopes
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 2
\pages 338--350
\mathnet{http://mi.mathnet.ru/smj2641}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3381243}
\elib{https://elibrary.ru/item.asp?id=23112842}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 2
\pages 275--284
\crossref{https://doi.org/10.1134/S003744661502007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353794200007}
\elib{https://elibrary.ru/item.asp?id=24027211}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928790231}
Linking options:
  • https://www.mathnet.ru/eng/smj2641
  • https://www.mathnet.ru/eng/smj/v56/i2/p338
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024