Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 1, Pages 56–64
DOI: https://doi.org/10.17377/smzh.2018.59.105
(Mi smj2953)
 

This article is cited in 3 scientific papers (total in 3 papers)

Describing neighborhoods of $5$-vertices in a class of $3$-polytopes with minimum degree $5$

O. V. Borodin, A. O. Ivanova, D. V. Nikiforov

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (440 kB) Citations (3)
References:
Abstract: Lebesgue proved in 1940 that each $3$-polytope with minimum degree $5$ contains a $5$-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences
$$ \begin{gathered} (6,6,7,7,7),\ (6,6,6,7,9),\ (6,6,6,6,11),\\ (5,6,7,7,8),\ (5,6,6,7,12),\ (5,6,6,8,10),\ (5,6,6,6,17),\\ (5,5,7,7,13),\ (5,5,7,8,10),\ (5,5,6,7,27),\ (5,5,6,6,\infty),\ (5,5,6,8,15),\ (5,5,6,9,11),\\ (5,5,5,7,41),\ (5,5,5,8,23),\ (5,5,5,9,17),\ (5,5,5,10,14),\ (5,5,5,11,13). \end{gathered} $$
We prove that each $3$-polytope with minimum degree $5$ without vertices of degree from $7$ to $10$ contains a $5$-vertex whose set of degrees of its neighbors is majorized by one of the following sequences: $(5,6,6,5,\infty)$, $(5,6,6,6,15)$, and $(6,6,6,6,6)$, where all parameters are tight.
Keywords: plane graph, structure properties, $3$-polytope, neighborhood.
Funding agency Grant number
Russian Science Foundation 16-11-10054
The authors were funded by the Russian Science Foundation (Grant 16-11-10054).
Received: 11.05.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 1, Pages 43–49
DOI: https://doi.org/10.1134/S0037446618010056
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 35R30
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Describing neighborhoods of $5$-vertices in a class of $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 59:1 (2018), 56–64; Siberian Math. J., 59:1 (2018), 43–49
Citation in format AMSBIB
\Bibitem{BorIvaNik18}
\by O.~V.~Borodin, A.~O.~Ivanova, D.~V.~Nikiforov
\paper Describing neighborhoods of $5$-vertices in a~class of $3$-polytopes with minimum degree~$5$
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 1
\pages 56--64
\mathnet{http://mi.mathnet.ru/smj2953}
\crossref{https://doi.org/10.17377/smzh.2018.59.105}
\elib{https://elibrary.ru/item.asp?id=32824586}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 1
\pages 43--49
\crossref{https://doi.org/10.1134/S0037446618010056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427144300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043536165}
Linking options:
  • https://www.mathnet.ru/eng/smj2953
  • https://www.mathnet.ru/eng/smj/v59/i1/p56
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :42
    References:30
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024