|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2008, Volume 5, Pages 417–426
(Mi semr116)
|
|
|
|
This article is cited in 12 scientific papers (total in 12 papers)
Research papers
Circular $(5,2)$-coloring of sparse graphs
O. V. Borodina, S. G. Hartkeb, A. O. Ivanovac, A. V. Kostochkaa, D. B. Westb a Sobolev Institute of Mathematics, Novosibirsk, Russia
b University of Illinois, Urbana, USA
c Yakutsk State University
Abstract:
We prove that every triangle-free graph whose subgraphs all have average degree less than $\frac{12}5$ has
a circular $(5,2)$-coloring. This includes planar and projective-planar graphs with girth at least $12$.
Keywords:
triangle-free graph, circular $(k,d)$-coloring, projective-planar graph.
Received August 14, 2008, published October 29, 2008
Citation:
O. V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, D. B. West, “Circular $(5,2)$-coloring of sparse graphs”, Sib. Èlektron. Mat. Izv., 5 (2008), 417–426
Linking options:
https://www.mathnet.ru/eng/semr116 https://www.mathnet.ru/eng/semr/v5/p417
|
|