Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 1, Pages 17–24 (Mi smj2509)  

This article is cited in 4 scientific papers (total in 4 papers)

Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$

O. V. Borodinab, A. O. Ivanovac

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia
c Ammosov North-Eastern Federal University, Yakutsk, Sakha Republic (Yakutia)
Full-text PDF (882 kB) Citations (4)
References:
Abstract: In 1940, Lebesgue proved that every $3$-polytope with minimum degree at least $4$ contains a $3$-face for which the set of degrees of its vertices is majorized by one of the entries: $(4,4,\infty)$, $(4,5,19)$, $(4,6,11)$, $(4,7,9)$, $(5,5,9)$, and $(5,6,7)$. This description was strengthened by Borodin (2002) to $(4,4,\infty)$, $(4,5,17)$, $(4,6,11)$, $(4,7,8)$, $(5,5,8)$, and $(5,6,6)$.
For triangulations with minimum degree at least $4$, Jendrol' (1999) gave a description of faces: $(4,4,\infty)$, $(4,5,13)$, $(4,6,17)$, $(4,7,8)$, $(5,5,7)$, and $(5,6,6)$.
We obtain the following description of faces in plane triangulations (in particular, for triangulated $3$-polytopes) with minimum degree at least $4$ in which all parameters are best possible and are attained independently of the others: $(4,4,\infty)$, $(4,5,11)$, $(4,6,10)$, $(4,7,7)$, $(5,5,7)$, and $(5,6,6)$.
In particular, we disprove a conjecture by Jendrol' (1999) on the combinatorial structure of faces in triangulated $3$-polytopes.
Keywords: plane map, plane graph, $3$-polytope, structural properties, weight.
Received: 30.04.2013
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 1, Pages 12–18
DOI: https://doi.org/10.1134/S0037446614010030
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$”, Sibirsk. Mat. Zh., 55:1 (2014), 17–24; Siberian Math. J., 55:1 (2014), 12–18
Citation in format AMSBIB
\Bibitem{BorIva14}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree~$4$
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 1
\pages 17--24
\mathnet{http://mi.mathnet.ru/smj2509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3220582}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 1
\pages 12--18
\crossref{https://doi.org/10.1134/S0037446614010030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332453900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894803885}
Linking options:
  • https://www.mathnet.ru/eng/smj2509
  • https://www.mathnet.ru/eng/smj/v55/i1/p17
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :57
    References:60
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024