|
|
Публикации в базе данных Math-Net.Ru |
Цитирования |
|
2024 |
1. |
Д. А. Попов, “Формулы Вороного и задача Гаусса”, УМН, 79:1(475) (2024), 59–134 ; D. A. Popov, “Voronoi's formulae and the Gauss problem”, Russian Math. Surveys, 79:1 (2024), 53–126 |
|
2022 |
2. |
М. А. Королёв, Д. А. Попов, “Об интеграле Ютилы в проблеме круга”, Изв. РАН. Сер. матем., 86:3 (2022), 3–46 ; M. A. Korolev, D. A. Popov, “On Jutila's integral in the circle problem”, Izv. Math., 86:3 (2022), 413–455 |
2
|
3. |
Д. А. Попов, “О спектре оператора Лапласа на замкнутых поверхностях”, УМН, 77:1(463) (2022), 91–108 ; D. A. Popov, “Spectrum of the Laplace operator on closed surfaces”, Russian Math. Surveys, 77:1 (2022), 81–97 |
1
|
4. |
Д. А. Попов, Д. В. Сушко, “Численное исследование свойств остаточного члена в проблеме круга”, Ж. вычисл. матем. и матем. физ., 62:12 (2022), 2002–2017 ; D. A. Popov, D. V. Sushko, “Numerical investigation of the properties of remainder in Gauss's circle problem”, Comput. Math. Math. Phys., 62:12 (2022), 2008–2022 |
1
|
|
2020 |
5. |
Д. А. Попов, “Распределение простых чисел и дискретный спектр оператора Лапласа”, Изв. РАН. Сер. матем., 84:5 (2020), 151–168 ; D. A. Popov, “Distribution of prime numbers and the discrete spectrum of the Laplace operator”, Izv. Math., 84:5 (2020), 960–977 |
|
2019 |
6. |
Д. А. Попов, “О связях дискретного спектра и спектра резонансов для оператора Лапласа на некомпактной гиперболической римановой поверхности”, Функц. анализ и его прил., 53:3 (2019), 61–78 |
1
|
7. |
Д. А. Попов, “Дискретный спектр оператора Лапласа на фундаментальной области модулярной группы и пси-функция Чебышёва”, Изв. РАН. Сер. матем., 83:5 (2019), 167–180 ; D. A. Popov, “The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function”, Izv. Math., 83:5 (2019), 1066–1079 |
2
|
8. |
Д. А. Попов, “Проблема круга и спектр оператора Лапласа на замкнутых двумерных многообразиях”, УМН, 74:5(449) (2019), 145–162 ; D. A. Popov, “Circle problem and the spectrum of the Laplace operator on closed 2-manifolds”, Russian Math. Surveys, 74:5 (2019), 909–925 |
4
|
|
2016 |
9. |
Д. А. Попов, “Оценки и поведение величин $P(x)$, $\Delta(x)$ на коротких интервалах”, Изв. РАН. Сер. матем., 80:6 (2016), 230–246 ; D. A. Popov, “Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals”, Izv. Math., 80:6 (2016), 1213–1230 |
3
|
|
2014 |
10. |
Д. А. Попов, “О формуле Вейля для оператора Лапласа на гиперболических римановых поверхностях”, Функц. анализ и его прил., 48:2 (2014), 93–96 ; D. A. Popov, “On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces”, Funct. Anal. Appl., 48:2 (2014), 150–153 |
1
|
|
2013 |
11. |
Д. А. Попов, “О формуле Сельберга для строго гиперболических групп”, Функц. анализ и его прил., 47:4 (2013), 53–66 ; D. A. Popov, “On the Selberg Trace Formula for Strictly Hyperbolic Groups”, Funct. Anal. Appl., 47:4 (2013), 290–301 |
4
|
|
2012 |
12. |
Д. А. Попов, “Явная формула для функции распределения собственных значений оператора Лапласа на компактной римановой поверхности рода $g>1$”, Функц. анализ и его прил., 46:2 (2012), 66–82 ; D. A. Popov, “Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$”, Funct. Anal. Appl., 46:2 (2012), 133–146 |
3
|
|
2011 |
13. |
Д. А. Попов, “О втором члене в формуле Вейля для спектра оператора Лапласа на двумерном торе и числе целых точек в спектральных областях”, Изв. РАН. Сер. матем., 75:5 (2011), 139–176 ; D. A. Popov, “On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains”, Izv. Math., 75:5 (2011), 1007–1045 |
2
|
|
2009 |
14. |
Д. А. Попов, “Поведение асимптотики положительного спектра семейства периодических задач Штурма–Лиувилля при непрерывном переходе от дефинитной к индефинитной задаче”, Изв. РАН. Сер. матем., 73:3 (2009), 151–182 ; D. A. Popov, “Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems
under continuous passage from a definite problem to an indefinite one”, Izv. Math., 73:3 (2009), 579–610 |
1
|
|
2008 |
15. |
Д. А. Попов, “Замечания о равномерных составных оценках осциллирующих интегралов с простыми особенностями”, Изв. РАН. Сер. матем., 72:4 (2008), 173–196 ; D. A. Popov, “Remarks on uniform combined estimates of oscillatory integrals
with simple singularities”, Izv. Math., 72:4 (2008), 793–816 |
4
|
|
2004 |
16. |
Д. А. Попов, Д. В. Сушко, “Восстановление изображений в оптоакустической томографии”, Пробл. передачи информ., 40:3 (2004), 81–107 ; D. A. Popov, D. V. Sushko, “Image Restoration in Optical Acoustic Tomography”, Problems Inform. Transmission, 40:3 (2004), 254–278 |
17
|
|
2003 |
17. |
Д. А. Попов, “Теорема Пэли–Винера для обобщенного преобразования Радона на плоскости”, Функц. анализ и его прил., 37:3 (2003), 65–72 ; D. A. Popov, “The Paley–Wiener Theorem for the Generalized Radon Transform on the Plane”, Funct. Anal. Appl., 37:3 (2003), 215–220 |
1
|
|
2001 |
18. |
Д. А. Попов, “Обобщенное преобразование Радона на плоскости, его обращение и условия Кавальери”, Функц. анализ и его прил., 35:4 (2001), 38–53 ; D. A. Popov, “The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions”, Funct. Anal. Appl., 35:4 (2001), 270–283 |
10
|
|
2000 |
19. |
Д. А. Попов, “О числе целых точек в трехмерных телах вращения”, Изв. РАН. Сер. матем., 64:2 (2000), 121–140 ; D. A. Popov, “On the number of lattice points in three-dimensional solids of revolution”, Izv. Math., 64:2 (2000), 343–361 |
6
|
|
1998 |
20. |
Д. А. Попов, “Восстановление характеристических функций в двумерной радоновской томографии”, УМН, 53:1(319) (1998), 115–198 ; D. A. Popov, “Reconstruction of characteristic functions in two-dimensional Radon tomography”, Russian Math. Surveys, 53:1 (1998), 109–193 |
9
|
21. |
Д. А. Попов, “О сферической сходимости интеграла Фурье индикатора $N$-мерной области”, Матем. сб., 189:7 (1998), 145–157 ; D. A. Popov, “Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain”, Sb. Math., 189:7 (1998), 1101–1113 |
4
|
|
1997 |
22. |
Д. А. Попов, “Оценки с константами для некоторых классов осциллирующих интегралов”, УМН, 52:1(313) (1997), 77–148 ; D. A. Popov, “Estimates with constants for some classes of oscillatory integrals”, Russian Math. Surveys, 52:1 (1997), 73–145 |
17
|
23. |
Д. А. Попов, “Сферическая сходимость ряда и интеграла Фурье индикатора двумерной области”, Труды МИАН, 218 (1997), 354–373 ; D. A. Popov, “Spherical convergence of the Fourier series and integral of the indicator of a two-dimensional domain”, Proc. Steklov Inst. Math., 218 (1997), 352–371 |
6
|
|
1990 |
24. |
Д. А. Попов, Д. В. Сушко, “О сходимости алгоритмов численного решения уравнения свертки”, Докл. АН СССР, 315:2 (1990), 309–313 ; D. A. Popov, D. V. Sushko, “Convergence of algorithms for the numerical solution of a
convolution equation”, Dokl. Math., 42:3 (1991), 784–788 |
2
|
|
1984 |
25. |
Д. А. Попов, “О применении гладких регуляризаторов для вычисления свертки”, Докл. АН СССР, 276:1 (1984), 38–42 |
2
|
|
1975 |
26. |
Д. А. Попов, Л. И. Дайхин, “Пространства Эйнштейна и поля Янга–Миллса”, Докл. АН СССР, 225:4 (1975), 790–793 |
27. |
Д. А. Попов, “К теории полей Янга–Миллса”, ТМФ, 24:3 (1975), 347–356 ; D. A. Popov, “Theory of Yang–Mills fields”, Theoret. and Math. Phys., 24:3 (1975), 879–885 |
17
|
|