|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
Maxim Korolev, Antanas Laurinčikas, “On the approximation by Mellin transform of the Riemann zeta-function”, Axioms, 12:6 (2023), 520–19 |
3
|
2. |
Maxim Korolev, Antanas Laurinčikas, “Joint approximation of analytic functions by shifts of the Riemann zeta-function twisted by the Gram function”, Carpathian J. Math., 39:1 (2023), 175–187 |
4
|
|
2022 |
3. |
A. Laurinčikas, “On Joint Universality of the Riemann and Hurwitz Zeta-Functions”, Mat. Zametki, 111:4 (2022), 551–560 ; Math. Notes, 111:4 (2022), 571–578 |
1
|
4. |
A. Laurinčikas, “On the universality of the zeta functions of certain cusp forms”, Mat. Sb., 213:5 (2022), 88–100 ; Sb. Math., 213:5 (2022), 659–670 |
1
|
|
2021 |
5. |
A. Laurinčikas, G. Vadeikis, “Joint weighted universality of the Hurwitz zeta-functions”, Algebra i Analiz, 33:3 (2021), 111–128 ; St. Petersburg Math. J., 33:3 (2022), 511–522 |
1
|
6. |
Maxim Korolev, Antanas Laurinčikas, “Gram points in the theory of zeta-functions of certain cusp forms”, J. Math. Anal. Appl., 504:1 (2021), 125396–18 |
7. |
A. Laurinčikas, “On Joint Universality of the Riemann Zeta-Function”, Mat. Zametki, 110:2 (2021), 221–233 ; Math. Notes, 110:2 (2021), 210–220 |
6
|
8. |
M. Jasas, A. Laurinčikas, D. Šiaučiūnas, “On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series”, Mat. Zametki, 109:6 (2021), 832–841 ; Math. Notes, 109:6 (2021), 876–883 |
4
|
9. |
A. Laurinčikas, “The universality of an absolutely convergent series on short intervals”, Sibirsk. Mat. Zh., 62:6 (2021), 1330–1338 ; Siberian Math. J., 62:6 (2021), 1076–1083 |
1
|
10. |
A. Laurinčikas, “The universality of some compositions on short intervals”, Sibirsk. Mat. Zh., 62:3 (2021), 555–562 ; Siberian Math. J., 62:3 (2021), 449–454 |
11. |
A. Laurinčikas, “On the Hurwitz Zeta-Function with Algebraic Irrational Parameter. II”, Trudy Mat. Inst. Steklova, 314 (2021), 134–144 ; Proc. Steklov Inst. Math., 314 (2021), 127–137 |
2
|
|
2020 |
12. |
Maxim Korolev, Antanas Laurinčikas, “A new application of the Gram points. II”, Aequationes Math., 94 (2020), 1171–1187 |
4
|
13. |
A. Laurinčikas, “On the Functional Independence of Zeta-Functions of Certain Cusp Forms”, Mat. Zametki, 107:4 (2020), 550–560 ; Math. Notes, 107:4 (2020), 609–617 |
1
|
14. |
A. Laurinčikas, “On a Generalization of Voronin's Theorem”, Mat. Zametki, 107:3 (2020), 400–411 ; Math. Notes, 107:3 (2020), 442–451 |
1
|
15. |
A. Laurinčikas, “Joint universality of zeta functions with periodic coefficients. ii”, Sibirsk. Mat. Zh., 61:5 (2020), 1064–1076 ; Siberian Math. J., 61:5 (2020), 848–858 |
1
|
|
2019 |
16. |
Maxim Korolev, Antanas Laurinčikas, “A new application of the Gram points”, Aequationes Math., 93:5 (2019), 859–873 |
8
|
17. |
A. Balčiūnas, A. Dubickas, A. Laurinčikas, “On the Hurwitz Zeta Functions with Algebraic Irrational Parameter”, Mat. Zametki, 105:2 (2019), 179–186 ; Math. Notes, 105:2 (2019), 173–179 |
7
|
18. |
A. Laurinčikas, J. Petuškinaitė, “Universality of $L$-Dirichlet functions and nontrivial zeros of the Riemann zeta-function”, Mat. Sb., 210:12 (2019), 98–119 ; Sb. Math., 210:12 (2019), 1753–1773 |
6
|
19. |
A. P. Laurinčikas, “On the mishou theorem with an algebraic parameter”, Sibirsk. Mat. Zh., 60:6 (2019), 1379–1388 ; Siberian Math. J., 60:6 (2019), 1075–1082 |
4
|
|
2018 |
20. |
A. Laurinčikas, “Discrete universality of the Riemann zeta-function and uniform distribution modulo 1”, Algebra i Analiz, 30:1 (2018), 139–150 ; St. Petersburg Math. J., 30:1 (2019), 103–110 |
9
|
21. |
V. Franckevič, A. Laurinčikas, D. Šiaučiūnas, “On joint value distribution of Hurwitz zeta-functions”, Chebyshevskii Sb., 19:3 (2018), 219–230 |
22. |
A. Laurinčikas, A. Mincevič, “Joint discrete universality for Lerch zeta-functions”, Chebyshevskii Sb., 19:1 (2018), 138–151 |
23. |
Antanas Laurinčikas, “Joint value distribution theorems for the Riemann and Hurwitz zeta-functions”, Mosc. Math. J., 18:2 (2018), 349–366 |
5
|
24. |
A. Laurinčikas, R. Macaitienė, D. Mochov, D. Šiaučiūnas, “Universality of the periodic Hurwitz zeta-function with rational parameter”, Sibirsk. Mat. Zh., 59:5 (2018), 1128–1135 ; Siberian Math. J., 59:5 (2018), 894–900 |
10
|
|
2017 |
25. |
A. P. Laurinčikas, “A Remark on the Distribution of the Values of the Riemann Zeta Function”, Mat. Zametki, 102:2 (2017), 247–254 ; Math. Notes, 102:2 (2017), 212–218 |
26. |
A. Laurinčikas, R. Macaitienė, “Discrete universality in the Selberg class”, Trudy Mat. Inst. Steklova, 299 (2017), 155–169 ; Proc. Steklov Inst. Math., 299 (2017), 143–156 |
4
|
27. |
A. Laurinčikas, “A discrete version of the Mishou theorem. II”, Trudy Mat. Inst. Steklova, 296 (2017), 181–191 ; Proc. Steklov Inst. Math., 296 (2017), 172–182 |
8
|
|
2016 |
28. |
A. Laurinčikas, L. Meška, “Modification of the Mishou theorem”, Chebyshevskii Sb., 17:3 (2016), 135–147 |
29. |
A. Laurinčikas, D. Mokhov, “A discrete universality theorem for periodic Hurwitz zeta-functions”, Chebyshevskii Sb., 17:1 (2016), 148–159 |
30. |
A. Laurinčikas, “An Elliott-Type Theorem for Twists of $L$-Functions of Elliptic Curves”, Mat. Zametki, 99:1 (2016), 78–88 ; Math. Notes, 99:1 (2016), 82–90 |
2
|
31. |
A. Laurinčikas, “Universality theorems for zeta-functions with periodic coefficients”, Sibirsk. Mat. Zh., 57:2 (2016), 420–431 ; Siberian Math. J., 57:2 (2016), 330–339 |
8
|
32. |
A. Laurinčikas, R. Macaitienė, “Value distribution of twists of $L$-functions of elliptic curves”, Sovrem. Probl. Mat., 23 (2016), 79–86 ; Proc. Steklov Inst. Math., 296, suppl. 2 (2017), 70–77 |
|
2015 |
33. |
A. Laurinčikas, D. Korsakienė, D. Šiaučiūnas, “Joint disctrete universality of Dirichlet $L$-functions. II”, Chebyshevskii Sb., 16:1 (2015), 205–218 |
1
|
|
2014 |
34. |
A. Laurinčikas, M. Stoncelis, D. Šiaučiūnas, “On the zeros of some functions related to periodic zeta-functions”, Chebyshevskii Sb., 15:1 (2014), 121–130 |
1
|
35. |
A. Laurinčikas, L. Meška, “Sharpening of the Universality Inequality”, Mat. Zametki, 96:6 (2014), 905–910 ; Math. Notes, 96:6 (2014), 971–976 |
19
|
36. |
A. Laurinčikas, “Joint discrete universality of Hurwitz zeta functions”, Mat. Sb., 205:11 (2014), 75–94 ; Sb. Math., 205:11 (2014), 1599–1619 |
3
|
37. |
A. Laurinčikas, R. Macaitienė, “The joint universality of Dirichlet $L$-functions and Lerch zeta-functions”, Sibirsk. Mat. Zh., 55:4 (2014), 790–805 ; Siberian Math. J., 55:4 (2014), 645–657 |
|
2013 |
38. |
S. Černigova, A. Laurinčikas, “The Atkinson type formula for the periodic zeta-function”, Chebyshevskii Sb., 14:2 (2013), 180–199 |
39. |
A. Laurinčikas, R. Macaitienė, D. Mokhov, D. Šiaučiūnas, “On universality of certain zeta-functions”, Izv. Saratov Univ. Math. Mech. Inform., 13:4(2) (2013), 67–72 |
3
|
|
2012 |
40. |
A. Laurinčikas, D. Šiaučiunas, “On zeros of some analytic functions related to the Hurwitz zeta-function”, Chebyshevskii Sb., 13:2 (2012), 86–90 |
41. |
A. Laurinčikas, “Universality of composite functions of periodic zeta functions”, Mat. Sb., 203:11 (2012), 105–120 ; Sb. Math., 203:11 (2012), 1631–1646 |
5
|
42. |
A. Laurinčikas, “On universality of the Lerch zeta-function”, Trudy Mat. Inst. Steklova, 276 (2012), 173–181 ; Proc. Steklov Inst. Math., 276 (2012), 167–175 |
1
|
|
2011 |
43. |
A. Laurinčikas, D. Šiaučiūnas, “Limit theorems for the Estermann zeta function. III”, Chebyshevskii Sb., 12:4 (2011), 97–108 |
44. |
Antanas Laurinčikas, Renata Macaitienė, Darius Šiaučiūnas, “Joint universality for zeta-functions of different types”, Chebyshevskii Sb., 12:2 (2011), 192–203 |
45. |
Antanas Laurinčikas, “Universality theorems for composite functions of zeta-functions”, Chebyshevskii Sb., 12:2 (2011), 182–191 |
46. |
Virginija Garbaliauskienė, Antanas Laurinčikas, “On twisted $L$-functions of elliptic curves”, Chebyshevskii Sb., 12:2 (2011), 171–181 |
47. |
A. Laurinčikas, “On joint universality of Dirichlet $L$-functions”, Chebyshevskii Sb., 12:1 (2011), 124–139 |
7
|
48. |
A. Laurinčikas, “A Growth Estimate for the Mellin Transform of the Riemann Zeta Function”, Mat. Zametki, 89:1 (2011), 70–81 ; Math. Notes, 89:1 (2011), 82–92 |
2
|
|
2010 |
49. |
V. Balinskaitė, A. Laurinčikas, “A discrete limit theorem for the Mellin transforms of the Riemann zeta-function”, Chebyshevskii Sb., 11:1 (2010), 31–46 |
50. |
A. Laurinčikas, “Some value-distribution theorems for periodic Hurwitz zeta-functions”, Fundam. Prikl. Mat., 16:5 (2010), 79–92 ; J. Math. Sci., 180:5 (2012), 581–591 |
51. |
A. Laurinčikas, “Joint universality of zeta-functions with periodic coefficients”, Izv. RAN. Ser. Mat., 74:3 (2010), 79–102 ; Izv. Math., 74:3 (2010), 515–539 |
37
|
52. |
A. Laurincikas, “On the Joint Universality of Lerch Zeta Functions”, Mat. Zametki, 88:3 (2010), 428–437 ; Math. Notes, 88:3 (2010), 386–394 |
7
|
53. |
A. Laurinčikas, “Limit theorems for the Mellin transform of the fourth power of the Riemann zeta-function”, Sibirsk. Mat. Zh., 51:1 (2010), 110–127 ; Siberian Math. J., 51:1 (2010), 88–103 |
|
2009 |
54. |
A. Laurinčikas, “The joint distribution of multiplicative functions”, Chebyshevskii Sb., 10:1 (2009), 41–58 |
55. |
A. P. Laurincikas, R. Macaitiené, “On the Joint Universality of Periodic Zeta Functions”, Mat. Zametki, 85:1 (2009), 54–64 ; Math. Notes, 85:1 (2009), 51–60 |
11
|
|
2008 |
56. |
Antanas Laurinčikas, Renata Macaitienė, “Discrete limit theorems for Estermann zeta-functions. II”, Algebra Discrete Math., 2008, no. 3, 69–83 |
57. |
A. Laurinčikas, “Joint universality for periodic Hurwitz zeta-functions”, Izv. RAN. Ser. Mat., 72:4 (2008), 121–140 ; Izv. Math., 72:4 (2008), 741–760 |
7
|
58. |
A. P. Laurincikas, “Functional Independence of Periodic Hurwitz Zeta Functions”, Mat. Zametki, 83:1 (2008), 69–76 ; Math. Notes, 83:1 (2008), 65–71 |
5
|
59. |
V. Garbaliauskienė, J. Genys, A. Laurinčikas, “Discrete universality of the $L$-functions of elliptic curves”, Sibirsk. Mat. Zh., 49:4 (2008), 768–785 ; Siberian Math. J., 49:4 (2008), 612–627 |
2
|
|
2007 |
60. |
Antanas Laurinčikas, Renata Macaitienė, “Discrete limit theorems for Estermann zeta-functions. I”, Algebra Discrete Math., 2007, no. 4, 84–101 |
61. |
Antanas Laurinčikas, Renata Macaitienė, Darius Šiaučiūnas, “The joint universality for periodic zeta-functions”, Chebyshevskii Sb., 8:2 (2007), 162–174 |
62. |
Antanas Laurinčikas, Renata Macaitienė, “Limit theorems for the Estermann zeta-function. IV”, Chebyshevskii Sb., 8:2 (2007), 148–161 |
63. |
A. P. Laurincikas, “Voronin-type theorem for periodic Hurwitz zeta-functions”, Mat. Sb., 198:2 (2007), 91–102 ; Sb. Math., 198:2 (2007), 231–242 |
12
|
64. |
R. Kacinskaite, A. P. Laurincikas, “A general discrete limit theorem in the space of analytic functions for the Matsumoto zeta-function”, Teor. Veroyatnost. i Primenen., 52:3 (2007), 594–603 ; Theory Probab. Appl., 52:3 (2008), 523–531 |
|
2006 |
65. |
A. Laurinčikas, “Value distribution of general Dirichlet series. VIII”, Algebra Discrete Math., 2006, no. 4, 40–56 |
1
|
66. |
A. P. Laurincikas, D. Siauciunas, “Remarks on the universality of the periodic zeta function”, Mat. Zametki, 80:4 (2006), 561–568 ; Math. Notes, 80:4 (2006), 532–538 |
29
|
|
2005 |
67. |
A. P. Laurincikas, “Joint universality of general Dirichlet series”, Izv. RAN. Ser. Mat., 69:1 (2005), 133–144 ; Izv. Math., 69:1 (2005), 131–142 |
5
|
68. |
A. P. Laurincikas, K. Matsumoto, J. Steuding, “Discrete Universality of $L$-Functions for New Forms”, Mat. Zametki, 78:4 (2005), 595–603 ; Math. Notes, 78:4 (2005), 551–558 |
7
|
69. |
A. P. Laurincikas, “A limit theorem for the Hurwitz zeta-function with
algebraic irrational parameter”, Zap. Nauchn. Sem. POMI, 322 (2005), 125–134 ; J. Math. Sci. (N. Y.), 137:2 (2006), 4684–4689 |
3
|
|
2003 |
70. |
A. P. Laurincikas, K. Matsumoto, J. Steuding, “The universality of $L$-functions associated with new forms”, Izv. RAN. Ser. Mat., 67:1 (2003), 83–98 ; Izv. Math., 67:1 (2003), 77–90 |
21
|
71. |
R. Garunkstis, A. P. Laurincikas, J. Steuding, “An Approximate Functional Equation for the Lerch Zeta Function”, Mat. Zametki, 74:4 (2003), 494–501 ; Math. Notes, 74:4 (2003), 469–476 |
6
|
|
1997 |
72. |
R. Garunkstis, A. P. Laurincikas, “A limit theorem with weight for the Lerch zeta function in the space of analytic functions”, Trudy Mat. Inst. Steklova, 218 (1997), 109–121 ; Proc. Steklov Inst. Math., 218 (1997), 104–116 |
3
|
|
1994 |
73. |
A. P. Laurincikas, “Limit theorems for Dirichlet $L$-functions”, Trudy Mat. Inst. Steklov., 207 (1994), 235–249 ; Proc. Steklov Inst. Math., 207 (1995), 215–226 |
|
1989 |
74. |
A. P. Laurincikas, “A limit theorem for the Riemann Zeta-function close to the critical line. II”, Mat. Sb., 180:6 (1989), 733–749 ; Math. USSR-Sb., 67:1 (1990), 177–193 |
2
|
|
1988 |
75. |
A. P. Laurincikas, “A limit theorem for the Riemann zeta-function close to the critical line”, Mat. Sb. (N.S.), 135(177):1 (1988), 3–11 ; Math. USSR-Sb., 63:1 (1989), 1–9 |
2
|
|
1986 |
76. |
A. P. Laurincikas, “Moments of the Riemann zeta-function on the critical line”, Mat. Zametki, 39:4 (1986), 483–493 ; Math. Notes, 39:4 (1986), 267–272 |
2
|
|
1979 |
77. |
A. P. Laurinčikas, “A limit theorem for Dirichlet $L$-series”, Mat. Zametki, 25:4 (1979), 481–485 ; Math. Notes, 25:4 (1979), 251–253 |
2
|
|
|
|
2022 |
78. |
Yu. V. Nesterenko, V. A. Bykovskii, V. M. Bukhshtaber, V. G. Chirskii, V. N. Chubarikov, A. P. Laurinčikas, N. M. Dobrovol'skii, N. N. Dobrovol'skii, I. Yu. Rebrova, N. V. Budarina, V. V. Beresnevich, D. V. Vasilyev, N. I. Kalosha, “Vasily Ivanovich Bernik (to the 75th anniversary)”, Chebyshevskii Sb., 23:1 (2022), 6–9 |
|
2020 |
79. |
S. V. Vostokov, Yu. V. Matiyasevich, Yu. V. Nesterenko, V. N. Chubarikov, V. I. Bernik, A. Laurinčikas, V. G. Zhuravlev, V. G. Chirskii, N. M. Dobrovol'skii, U. M. Pachev, F. V. Podsypanin, I. Yu. Rebrova, B. M. Shirokov, N. N. Dobrovol'skii, “Evgeny Vladimirovich Podsypanin”, Chebyshevskii Sb., 21:4 (2020), 425–426 |
|
2016 |
80. |
Yu. V. Nesterenko, V. A. Bykovskii, V. M. Buchstaber, V. G. Chirsky, V. N. Chubarikov, A. Laurinchikas, N. M. Dobrovolsky, N. V. Budarina, I. V. Gaishun, V. V. Beresnevich, D. V. Vasiliev, “Vasily Ivanovich Bernik (on his seventieth)”, Chebyshevskii Sb., 17:4 (2016), 203–210 |
|
Presentations in Math-Net.Ru |
1. |
Voronin's universality theorem in short intervals A. P. Laurinčikas, D. Šiaučiūnas
International conference on Analytic Number Theory dedicated to 75th anniversary of G. I. Arkhipov and S. M. Voronin December 16, 2020 11:00
|
2. |
Weighted universality of the Hurwitz zeta-function A. Laurin{\v c}ikas, G. Vadeikis
XVI International Conference «Algebra, Number Theory and Discrete Geometry: modern problems, applications and problems of history» dedicated to the 80th anniversary of the birth of Professor Michel Desa May 17, 2019 12:40
|
3. |
On the Hurwitz zeta-function with algebraic irrational parameter A. Laurin{\v c}ikas
XVI International Conference «Algebra, Number Theory and Discrete Geometry: modern problems, applications and problems of history» dedicated to the 80th anniversary of the birth of Professor Michel Desa May 16, 2019 13:20
|
4. |
Zeros-distribution of the Riemann zeta-function and universality A. P. Laurinčikas
À.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications May 25, 2017 12:10
|
5. |
A joint discrete universality of Dirichlet $L$-functions A. Laurinčikas
Conference in memory of A. A. Karatsuba on number theory and applications, 2015 January 30, 2015 16:00
|
6. |
Äèñêðåòíàÿ óíèâåðñàëüíîñòü äçåòà-ôóíêöèè Ðèìàíà è äçåòà-ôóíêöèè Ãóðâèöà A. Laurinčikas
Conference in memory of A. A. Karatsuba on number theory and applications January 31, 2014 15:20
|
|
|
Organisations |
|
|
|
|