Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Laurinčikas, Antanas P

Statistics Math-Net.Ru
Total publications: 80
Scientific articles: 77
Presentations: 6

Number of views:
This page:3674
Abstract pages:21705
Full texts:7295
References:3171
Professor
Doctor of physico-mathematical sciences (1990)
E-mail:
Keywords: joint universality, limit theorem, periodic zeta-function, periodic Hurwitz zeta-function.

https://www.mathnet.ru/eng/person12640
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/110850
https://orcid.org/0000-0002-7671-0282

Publications in Math-Net.Ru Citations
2023
1. Maxim Korolev, Antanas Laurinčikas, “On the approximation by Mellin transform of the Riemann zeta-function”, Axioms, 12:6 (2023),  520–19  mathnet  mathscinet 3
2. Maxim Korolev, Antanas Laurinčikas, “Joint approximation of analytic functions by shifts of the Riemann zeta-function twisted by the Gram function”, Carpathian J. Math., 39:1 (2023),  175–187  mathnet  mathscinet 4
2022
3. A. Laurinčikas, “On Joint Universality of the Riemann and Hurwitz Zeta-Functions”, Mat. Zametki, 111:4 (2022),  551–560  mathnet; Math. Notes, 111:4 (2022), 571–578  scopus 1
4. A. Laurinčikas, “On the universality of the zeta functions of certain cusp forms”, Mat. Sb., 213:5 (2022),  88–100  mathnet  mathscinet; Sb. Math., 213:5 (2022), 659–670  isi  scopus 1
2021
5. A. Laurinčikas, G. Vadeikis, “Joint weighted universality of the Hurwitz zeta-functions”, Algebra i Analiz, 33:3 (2021),  111–128  mathnet; St. Petersburg Math. J., 33:3 (2022), 511–522 1
6. Maxim Korolev, Antanas Laurinčikas, “Gram points in the theory of zeta-functions of certain cusp forms”, J. Math. Anal. Appl., 504:1 (2021),  125396–18  mathnet  zmath  isi  scopus
7. A. Laurinčikas, “On Joint Universality of the Riemann Zeta-Function”, Mat. Zametki, 110:2 (2021),  221–233  mathnet  elib; Math. Notes, 110:2 (2021), 210–220  isi  scopus 6
8. M. Jasas, A. Laurinčikas, D. Šiaučiūnas, “On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series”, Mat. Zametki, 109:6 (2021),  832–841  mathnet; Math. Notes, 109:6 (2021), 876–883  isi 4
9. A. Laurinčikas, “The universality of an absolutely convergent series on short intervals”, Sibirsk. Mat. Zh., 62:6 (2021),  1330–1338  mathnet  elib; Siberian Math. J., 62:6 (2021), 1076–1083  isi  scopus 1
10. A. Laurinčikas, “The universality of some compositions on short intervals”, Sibirsk. Mat. Zh., 62:3 (2021),  555–562  mathnet  elib; Siberian Math. J., 62:3 (2021), 449–454  isi  scopus
11. A. Laurinčikas, “On the Hurwitz Zeta-Function with Algebraic Irrational Parameter. II”, Trudy Mat. Inst. Steklova, 314 (2021),  134–144  mathnet  elib; Proc. Steklov Inst. Math., 314 (2021), 127–137  isi  scopus 2
2020
12. Maxim Korolev, Antanas Laurinčikas, “A new application of the Gram points. II”, Aequationes Math., 94 (2020),  1171–1187  mathnet  mathscinet  zmath  isi  scopus 4
13. A. Laurinčikas, “On the Functional Independence of Zeta-Functions of Certain Cusp Forms”, Mat. Zametki, 107:4 (2020),  550–560  mathnet  mathscinet; Math. Notes, 107:4 (2020), 609–617  isi  scopus 1
14. A. Laurinčikas, “On a Generalization of Voronin's Theorem”, Mat. Zametki, 107:3 (2020),  400–411  mathnet  mathscinet; Math. Notes, 107:3 (2020), 442–451  isi  scopus 1
15. A. Laurinčikas, “Joint universality of zeta functions with periodic coefficients. ii”, Sibirsk. Mat. Zh., 61:5 (2020),  1064–1076  mathnet  elib; Siberian Math. J., 61:5 (2020), 848–858  isi  scopus 1
2019
16. Maxim Korolev, Antanas Laurinčikas, “A new application of the Gram points”, Aequationes Math., 93:5 (2019),  859–873  mathnet  mathscinet  zmath  isi  scopus 8
17. A. Balčiūnas, A. Dubickas, A. Laurinčikas, “On the Hurwitz Zeta Functions with Algebraic Irrational Parameter”, Mat. Zametki, 105:2 (2019),  179–186  mathnet  mathscinet  elib; Math. Notes, 105:2 (2019), 173–179  isi  scopus 7
18. A. Laurinčikas, J. Petuškinaitė, “Universality of $L$-Dirichlet functions and nontrivial zeros of the Riemann zeta-function”, Mat. Sb., 210:12 (2019),  98–119  mathnet  mathscinet; Sb. Math., 210:12 (2019), 1753–1773  isi  scopus 6
19. A. P. Laurinčikas, “On the mishou theorem with an algebraic parameter”, Sibirsk. Mat. Zh., 60:6 (2019),  1379–1388  mathnet  elib; Siberian Math. J., 60:6 (2019), 1075–1082  isi  scopus 4
2018
20. A. Laurinčikas, “Discrete universality of the Riemann zeta-function and uniform distribution modulo 1”, Algebra i Analiz, 30:1 (2018),  139–150  mathnet  mathscinet  elib; St. Petersburg Math. J., 30:1 (2019), 103–110  isi  scopus 9
21. V. Franckevič, A. Laurinčikas, D. Šiaučiūnas, “On joint value distribution of Hurwitz zeta-functions”, Chebyshevskii Sb., 19:3 (2018),  219–230  mathnet  elib
22. A. Laurinčikas, A. Mincevič, “Joint discrete universality for Lerch zeta-functions”, Chebyshevskii Sb., 19:1 (2018),  138–151  mathnet
23. Antanas Laurinčikas, “Joint value distribution theorems for the Riemann and Hurwitz zeta-functions”, Mosc. Math. J., 18:2 (2018),  349–366  mathnet  isi  scopus 5
24. A. Laurinčikas, R. Macaitienė, D. Mochov, D. Šiaučiūnas, “Universality of the periodic Hurwitz zeta-function with rational parameter”, Sibirsk. Mat. Zh., 59:5 (2018),  1128–1135  mathnet  elib; Siberian Math. J., 59:5 (2018), 894–900  isi  scopus 10
2017
25. A. P. Laurinčikas, “A Remark on the Distribution of the Values of the Riemann Zeta Function”, Mat. Zametki, 102:2 (2017),  247–254  mathnet  mathscinet  elib; Math. Notes, 102:2 (2017), 212–218  isi  scopus
26. A. Laurinčikas, R. Macaitienė, “Discrete universality in the Selberg class”, Trudy Mat. Inst. Steklova, 299 (2017),  155–169  mathnet  elib; Proc. Steklov Inst. Math., 299 (2017), 143–156  isi  scopus 4
27. A. Laurinčikas, “A discrete version of the Mishou theorem. II”, Trudy Mat. Inst. Steklova, 296 (2017),  181–191  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 296 (2017), 172–182  isi  scopus 8
2016
28. A. Laurinčikas, L. Meška, “Modification of the Mishou theorem”, Chebyshevskii Sb., 17:3 (2016),  135–147  mathnet  elib
29. A. Laurinčikas, D. Mokhov, “A discrete universality theorem for periodic Hurwitz zeta-functions”, Chebyshevskii Sb., 17:1 (2016),  148–159  mathnet  elib
30. A. Laurinčikas, “An Elliott-Type Theorem for Twists of $L$-Functions of Elliptic Curves”, Mat. Zametki, 99:1 (2016),  78–88  mathnet  mathscinet  elib; Math. Notes, 99:1 (2016), 82–90  isi  scopus 2
31. A. Laurinčikas, “Universality theorems for zeta-functions with periodic coefficients”, Sibirsk. Mat. Zh., 57:2 (2016),  420–431  mathnet  mathscinet  elib; Siberian Math. J., 57:2 (2016), 330–339  isi  scopus 8
32. A. Laurinčikas, R. Macaitienė, “Value distribution of twists of $L$-functions of elliptic curves”, Sovrem. Probl. Mat., 23 (2016),  79–86  mathnet  elib; Proc. Steklov Inst. Math., 296, suppl. 2 (2017), 70–77  isi  scopus
2015
33. A. Laurinčikas, D. Korsakienė, D. Šiaučiūnas, “Joint disctrete universality of Dirichlet $L$-functions. II”, Chebyshevskii Sb., 16:1 (2015),  205–218  mathnet  elib 1
2014
34. A. Laurinčikas, M. Stoncelis, D. Šiaučiūnas, “On the zeros of some functions related to periodic zeta-functions”, Chebyshevskii Sb., 15:1 (2014),  121–130  mathnet 1
35. A. Laurinčikas, L. Meška, “Sharpening of the Universality Inequality”, Mat. Zametki, 96:6 (2014),  905–910  mathnet  mathscinet  zmath  elib; Math. Notes, 96:6 (2014), 971–976  isi  scopus 19
36. A. Laurinčikas, “Joint discrete universality of Hurwitz zeta functions”, Mat. Sb., 205:11 (2014),  75–94  mathnet  mathscinet  zmath  elib; Sb. Math., 205:11 (2014), 1599–1619  isi  scopus 3
37. A. Laurinčikas, R. Macaitienė, “The joint universality of Dirichlet $L$-functions and Lerch zeta-functions”, Sibirsk. Mat. Zh., 55:4 (2014),  790–805  mathnet  mathscinet; Siberian Math. J., 55:4 (2014), 645–657  isi  scopus
2013
38. S. Černigova, A. Laurinčikas, “The Atkinson type formula for the periodic zeta-function”, Chebyshevskii Sb., 14:2 (2013),  180–199  mathnet
39. A. Laurinčikas, R. Macaitienė, D. Mokhov, D. Šiaučiūnas, “On universality of certain zeta-functions”, Izv. Saratov Univ. Math. Mech. Inform., 13:4(2) (2013),  67–72  mathnet 3
2012
40. A. Laurinčikas, D. Šiaučiunas, “On zeros of some analytic functions related to the Hurwitz zeta-function”, Chebyshevskii Sb., 13:2 (2012),  86–90  mathnet
41. A. Laurinčikas, “Universality of composite functions of periodic zeta functions”, Mat. Sb., 203:11 (2012),  105–120  mathnet  mathscinet  zmath  elib; Sb. Math., 203:11 (2012), 1631–1646  isi  scopus 5
42. A. Laurinčikas, “On universality of the Lerch zeta-function”, Trudy Mat. Inst. Steklova, 276 (2012),  173–181  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 276 (2012), 167–175  isi  scopus 1
2011
43. A. Laurinčikas, D. Šiaučiūnas, “Limit theorems for the Estermann zeta function. III”, Chebyshevskii Sb., 12:4 (2011),  97–108  mathnet  mathscinet
44. Antanas Laurinčikas, Renata Macaitienė, Darius Šiaučiūnas, “Joint universality for zeta-functions of different types”, Chebyshevskii Sb., 12:2 (2011),  192–203  mathnet  mathscinet
45. Antanas Laurinčikas, “Universality theorems for composite functions of zeta-functions”, Chebyshevskii Sb., 12:2 (2011),  182–191  mathnet  mathscinet
46. Virginija Garbaliauskienė, Antanas Laurinčikas, “On twisted $L$-functions of elliptic curves”, Chebyshevskii Sb., 12:2 (2011),  171–181  mathnet  mathscinet
47. A. Laurinčikas, “On joint universality of Dirichlet $L$-functions”, Chebyshevskii Sb., 12:1 (2011),  124–139  mathnet  mathscinet 7
48. A. Laurinčikas, “A Growth Estimate for the Mellin Transform of the Riemann Zeta Function”, Mat. Zametki, 89:1 (2011),  70–81  mathnet  mathscinet; Math. Notes, 89:1 (2011), 82–92  isi  scopus 2
2010
49. V. Balinskaitė, A. Laurinčikas, “A discrete limit theorem for the Mellin transforms of the Riemann zeta-function”, Chebyshevskii Sb., 11:1 (2010),  31–46  mathnet  mathscinet
50. A. Laurinčikas, “Some value-distribution theorems for periodic Hurwitz zeta-functions”, Fundam. Prikl. Mat., 16:5 (2010),  79–92  mathnet  mathscinet  elib; J. Math. Sci., 180:5 (2012), 581–591  scopus
51. A. Laurinčikas, “Joint universality of zeta-functions with periodic coefficients”, Izv. RAN. Ser. Mat., 74:3 (2010),  79–102  mathnet  mathscinet  zmath  elib; Izv. Math., 74:3 (2010), 515–539  isi  scopus 37
52. A. Laurincikas, “On the Joint Universality of Lerch Zeta Functions”, Mat. Zametki, 88:3 (2010),  428–437  mathnet  mathscinet; Math. Notes, 88:3 (2010), 386–394  isi  scopus 7
53. A. Laurinčikas, “Limit theorems for the Mellin transform of the fourth power of the Riemann zeta-function”, Sibirsk. Mat. Zh., 51:1 (2010),  110–127  mathnet  mathscinet; Siberian Math. J., 51:1 (2010), 88–103  isi  scopus
2009
54. A. Laurinčikas, “The joint distribution of multiplicative functions”, Chebyshevskii Sb., 10:1 (2009),  41–58  mathnet  mathscinet
55. A. P. Laurincikas, R. Macaitiené, “On the Joint Universality of Periodic Zeta Functions”, Mat. Zametki, 85:1 (2009),  54–64  mathnet  mathscinet; Math. Notes, 85:1 (2009), 51–60  isi  scopus 11
2008
56. Antanas Laurinčikas, Renata Macaitienė, “Discrete limit theorems for Estermann zeta-functions. II”, Algebra Discrete Math., 2008, no. 3,  69–83  mathnet  mathscinet  zmath
57. A. Laurinčikas, “Joint universality for periodic Hurwitz zeta-functions”, Izv. RAN. Ser. Mat., 72:4 (2008),  121–140  mathnet  mathscinet  zmath  elib; Izv. Math., 72:4 (2008), 741–760  isi  scopus 7
58. A. P. Laurincikas, “Functional Independence of Periodic Hurwitz Zeta Functions”, Mat. Zametki, 83:1 (2008),  69–76  mathnet  mathscinet  zmath  elib; Math. Notes, 83:1 (2008), 65–71  isi  scopus 5
59. V. Garbaliauskienė, J. Genys, A. Laurinčikas, “Discrete universality of the $L$-functions of elliptic curves”, Sibirsk. Mat. Zh., 49:4 (2008),  768–785  mathnet  mathscinet  zmath  elib; Siberian Math. J., 49:4 (2008), 612–627  isi  scopus 2
2007
60. Antanas Laurinčikas, Renata Macaitienė, “Discrete limit theorems for Estermann zeta-functions. I”, Algebra Discrete Math., 2007, no. 4,  84–101  mathnet  mathscinet  zmath
61. Antanas Laurinčikas, Renata Macaitienė, Darius Šiaučiūnas, “The joint universality for periodic zeta-functions”, Chebyshevskii Sb., 8:2 (2007),  162–174  mathnet  mathscinet  zmath
62. Antanas Laurinčikas, Renata Macaitienė, “Limit theorems for the Estermann zeta-function. IV”, Chebyshevskii Sb., 8:2 (2007),  148–161  mathnet  mathscinet  zmath
63. A. P. Laurincikas, “Voronin-type theorem for periodic Hurwitz zeta-functions”, Mat. Sb., 198:2 (2007),  91–102  mathnet  mathscinet  zmath  elib; Sb. Math., 198:2 (2007), 231–242  isi  scopus 12
64. R. Kacinskaite, A. P. Laurincikas, “A general discrete limit theorem in the space of analytic functions for the Matsumoto zeta-function”, Teor. Veroyatnost. i Primenen., 52:3 (2007),  594–603  mathnet  mathscinet  zmath  elib; Theory Probab. Appl., 52:3 (2008), 523–531  isi  scopus
2006
65. A. Laurinčikas, “Value distribution of general Dirichlet series. VIII”, Algebra Discrete Math., 2006, no. 4,  40–56  mathnet  mathscinet  zmath 1
66. A. P. Laurincikas, D. Siauciunas, “Remarks on the universality of the periodic zeta function”, Mat. Zametki, 80:4 (2006),  561–568  mathnet  mathscinet  zmath  elib; Math. Notes, 80:4 (2006), 532–538  isi  scopus 29
2005
67. A. P. Laurincikas, “Joint universality of general Dirichlet series”, Izv. RAN. Ser. Mat., 69:1 (2005),  133–144  mathnet  mathscinet  zmath  elib; Izv. Math., 69:1 (2005), 131–142  isi  scopus 5
68. A. P. Laurincikas, K. Matsumoto, J. Steuding, “Discrete Universality of $L$-Functions for New Forms”, Mat. Zametki, 78:4 (2005),  595–603  mathnet  mathscinet  zmath  elib; Math. Notes, 78:4 (2005), 551–558  isi  scopus 7
69. A. P. Laurincikas, “A limit theorem for the Hurwitz zeta-function with algebraic irrational parameter”, Zap. Nauchn. Sem. POMI, 322 (2005),  125–134  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 137:2 (2006), 4684–4689  scopus 3
2003
70. A. P. Laurincikas, K. Matsumoto, J. Steuding, “The universality of $L$-functions associated with new forms”, Izv. RAN. Ser. Mat., 67:1 (2003),  83–98  mathnet  mathscinet  zmath; Izv. Math., 67:1 (2003), 77–90  isi  scopus 21
71. R. Garunkstis, A. P. Laurincikas, J. Steuding, “An Approximate Functional Equation for the Lerch Zeta Function”, Mat. Zametki, 74:4 (2003),  494–501  mathnet  mathscinet  zmath; Math. Notes, 74:4 (2003), 469–476  isi  scopus 6
1997
72. R. Garunkstis, A. P. Laurincikas, “A limit theorem with weight for the Lerch zeta function in the space of analytic functions”, Trudy Mat. Inst. Steklova, 218 (1997),  109–121  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 218 (1997), 104–116 3
1994
73. A. P. Laurincikas, “Limit theorems for Dirichlet $L$-functions”, Trudy Mat. Inst. Steklov., 207 (1994),  235–249  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 207 (1995), 215–226
1989
74. A. P. Laurincikas, “A limit theorem for the Riemann Zeta-function close to the critical line. II”, Mat. Sb., 180:6 (1989),  733–749  mathnet  mathscinet  zmath; Math. USSR-Sb., 67:1 (1990), 177–193  isi 2
1988
75. A. P. Laurincikas, “A limit theorem for the Riemann zeta-function close to the critical line”, Mat. Sb. (N.S.), 135(177):1 (1988),  3–11  mathnet  mathscinet  zmath; Math. USSR-Sb., 63:1 (1989), 1–9 2
1986
76. A. P. Laurincikas, “Moments of the Riemann zeta-function on the critical line”, Mat. Zametki, 39:4 (1986),  483–493  mathnet  mathscinet  zmath; Math. Notes, 39:4 (1986), 267–272  isi 2
1979
77. A. P. Laurinčikas, “A limit theorem for Dirichlet $L$-series”, Mat. Zametki, 25:4 (1979),  481–485  mathnet  mathscinet  zmath; Math. Notes, 25:4 (1979), 251–253 2

2022
78. Yu. V. Nesterenko, V. A. Bykovskii, V. M. Bukhshtaber, V. G. Chirskii, V. N. Chubarikov, A. P. Laurinčikas, N. M. Dobrovol'skii, N. N. Dobrovol'skii, I. Yu. Rebrova, N. V. Budarina, V. V. Beresnevich, D. V. Vasilyev, N. I. Kalosha, “Vasily Ivanovich Bernik (to the 75th anniversary)”, Chebyshevskii Sb., 23:1 (2022),  6–9  mathnet
2020
79. S. V. Vostokov, Yu. V. Matiyasevich, Yu. V. Nesterenko, V. N. Chubarikov, V. I. Bernik, A. Laurinčikas, V. G. Zhuravlev, V. G. Chirskii, N. M. Dobrovol'skii, U. M. Pachev, F. V. Podsypanin, I. Yu. Rebrova, B. M. Shirokov, N. N. Dobrovol'skii, “Evgeny Vladimirovich Podsypanin”, Chebyshevskii Sb., 21:4 (2020),  425–426  mathnet
2016
80. Yu. V. Nesterenko, V. A. Bykovskii, V. M. Buchstaber, V. G. Chirsky, V. N. Chubarikov, A. Laurinchikas, N. M. Dobrovolsky, N. V. Budarina, I. V. Gaishun, V. V. Beresnevich, D. V. Vasiliev, “Vasily Ivanovich Bernik (on his seventieth)”, Chebyshevskii Sb., 17:4 (2016),  203–210  mathnet  elib

Presentations in Math-Net.Ru
1. Voronin's universality theorem in short intervals
A. P. Laurinčikas, D. Šiaučiūnas
International conference on Analytic Number Theory dedicated to 75th anniversary of G. I. Arkhipov and S. M. Voronin
December 16, 2020 11:00   
2. Weighted universality of the Hurwitz zeta-function
A. Laurin{\v c}ikas, G. Vadeikis
XVI International Conference «Algebra, Number Theory and Discrete Geometry: modern problems, applications and problems of history» dedicated to the 80th anniversary of the birth of Professor Michel Desa
May 17, 2019 12:40
3. On the Hurwitz zeta-function with algebraic irrational parameter
A. Laurin{\v c}ikas
XVI International Conference «Algebra, Number Theory and Discrete Geometry: modern problems, applications and problems of history» dedicated to the 80th anniversary of the birth of Professor Michel Desa
May 16, 2019 13:20
4. Zeros-distribution of the Riemann zeta-function and universality
A. P. Laurinčikas
À.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 25, 2017 12:10   
5. A joint discrete universality of Dirichlet $L$-functions
A. Laurinčikas
Conference in memory of A. A. Karatsuba on number theory and applications, 2015
January 30, 2015 16:00   
6. Äèñêðåòíàÿ óíèâåðñàëüíîñòü äçåòà-ôóíêöèè Ðèìàíà è äçåòà-ôóíêöèè Ãóðâèöà
A. Laurinčikas
Conference in memory of A. A. Karatsuba on number theory and applications
January 31, 2014 15:20   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024