Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 11, Pages 1631–1646
DOI: https://doi.org/10.1070/SM2012v203n11ABEH004279
(Mi sm7833)
 

This article is cited in 5 scientific papers (total in 5 papers)

Universality of composite functions of periodic zeta functions

A. Laurinčikas

Department of Mathematical Computer Science, Vilnius University
References:
Abstract: In the paper, we prove the universality, in the sense of Voronin, for some classes of composite functions $F(\zeta(s;\mathfrak a))$, where the function $\zeta(s;\mathfrak a)$ is defined by a Dirichlet series with periodic multiplicative coefficients. We also study the universality of functions of the form $F(\zeta(s;\mathfrak a_1),\dots,\zeta(s;\mathfrak a_r))$. For example, it follows from general theorems that every linear combination of derivatives of the function $\zeta(s;\mathfrak a)$ and every linear combination of the functions $\zeta(s;\mathfrak a_1),\dots,\zeta(s;\mathfrak a_r)$ are universal.
Bibliography: 18 titles.
Keywords: support of a measure, periodic zeta function, limit theorem, the space of analytic functions, universality.
Received: 18.12.2010
Bibliographic databases:
Document Type: Article
UDC: 511.331
MSC: 11M41, 30K10
Language: English
Original paper language: Russian
Citation: A. Laurinčikas, “Universality of composite functions of periodic zeta functions”, Sb. Math., 203:11 (2012), 1631–1646
Citation in format AMSBIB
\Bibitem{Lau12}
\by A.~Laurin{\v{c}}ikas
\paper Universality of composite functions of periodic zeta functions
\jour Sb. Math.
\yr 2012
\vol 203
\issue 11
\pages 1631--1646
\mathnet{http://mi.mathnet.ru//eng/sm7833}
\crossref{https://doi.org/10.1070/SM2012v203n11ABEH004279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3053228}
\zmath{https://zbmath.org/?q=an:06146413}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203.1631L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000313837500006}
\elib{https://elibrary.ru/item.asp?id=19066363}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84873877568}
Linking options:
  • https://www.mathnet.ru/eng/sm7833
  • https://doi.org/10.1070/SM2012v203n11ABEH004279
  • https://www.mathnet.ru/eng/sm/v203/i11/p105
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025