Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 25, 2017 12:10–12:40, Moscow, Steklov Mathematical Institute
 


Zeros-distribution of the Riemann zeta-function and universality

A. P. Laurinčikas

Institute of Mathematics and Informatics, Vilnius University, Vilnius
Video records:
MP4 269.3 Mb
MP4 1,061.2 Mb

Number of views:
This page:389
Video files:65

A. P. Laurinčikas
Photo Gallery



Abstract: In 1975, S.M. Voronin discovered the universality property of the zeta-function $\zeta(s)$, $s=\sigma+it$, i.e., that a wide class of analytic functions can be approximated by shifts $\zeta(s+i\tau)$, $\tau\in \mathbb{R}$.
We consider the universality of $\zeta(s)$ when $\tau$ takes values from the set $\{\gamma_{k}: k\in \mathbb{N}\}$, where $0<\gamma_{1}\le\gamma_{2}\le\dots$ are the imaginary parts of the non-trivial zeros of $\zeta(s)$.
We suppose that
$$ \mathop{\sum_{\gamma_{l},\gamma_{k} \le T}}\limits_{|\gamma_{l}-\gamma_{k}|<{c\over \log T}}1\,\ll\,T\log T, \quad T\to\infty, $$
with a certain constant $c>0$. This estimate is a weak form of the Montgomery pair correlation conjecture [1].
Let $D=\bigl\{s\in \mathbb{C}: \tfrac{1}{2}<\sigma<1\bigr\}$, $\mathcal{K}$ be the class of compact subsets of $D$ with connected complements, and let $H_{0}(K)$, $K\in \mathcal{K}$, denote the class of continuous non-vanishing functions on $K$ which are analytic in the interior of $K$. Then we have
Theorem. Suppose that the weak Montgomery conjecture is true. Let $K\in \mathcal{K}$ and $f(s)\in H_{0}(K)$. Then, for every $\varepsilon>0$ and $h>0$,
$$ \liminf_{N\to\infty} \frac{1}{N} \# \left\{ 1\leqslant k\leqslant N: \sup_{s\in K} |\zeta(s+i\gamma_k h)-f(s)|<\varepsilon\right\}>0. $$

In the report, the approximation of analytic functions by $F(\zeta(s+i\gamma_{k}h))$ for some classes of operators $F$ also will be discussed.
[1] H.L. Montgomery, The pair correlation of zeros of the zeta function. In: Analytic Number Theory, (St. Louis Univ., 1972), H.G. Diamond (ed.), Proc. Sympos. Pure Math., Vol. XXIV, Amer. Math. Soc. Providence, 1973. P. 181 – 193.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024