Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 67, Issue 1, Pages 177–193
DOI: https://doi.org/10.1070/SM1990v067n01ABEH002086
(Mi sm1631)
 

This article is cited in 2 scientific papers (total in 2 papers)

A limit theorem for the Riemann Zeta-function close to the critical line. II

A. P. Laurincikas
References:
Abstract: Let $\Delta_T\to\infty$, $\Delta_T\leq\ln T$, and $\psi_T\to\infty,\ \ln\psi_T=o(\ln\Delta_T)$, as $T\to\infty$, and let $\displaystyle\sigma_T=\frac12+\frac{\psi_T\sqrt{\ln\Delta_T}}{\Delta_T}$. In this paper we study the asymptotic behavior of the Riemann $\zeta$-function on the vertical lines $\sigma_T+it$. We prove that the distribution function
$$ \frac1T\operatorname{mes}\{t\in[0,T],\ |\zeta(\sigma_T+it)|(2^{-1}\ln\Delta_T)^{-1/2}<x\}, $$
converges to a logarithmic normal law distribution function as $T\to\infty$, and that, if $\exp\{\Delta_T\}\leqslant(\ln T)^{\frac23}$, then the measure
$$ \frac1T\operatorname{mes}\{t\in[0,T],\ \zeta(\sigma_T+it)(2^{-1}\ln\Delta_T)^{-1/2}\in A\}, \quad A\in\mathscr B(C), $$
is weakly convergent to a nonsingular measure.
The proof of the first assertion uses the method of moments, and that of the second uses the method of characteristic transformations.
Bibliography: 8 titles
Received: 04.07.1987 and 22.02.1989
Bibliographic databases:
UDC: 511 + 519.2
MSC: Primary 11M06; Secondary 11M26, 11M41
Language: English
Original paper language: Russian
Citation: A. P. Laurincikas, “A limit theorem for the Riemann Zeta-function close to the critical line. II”, Math. USSR-Sb., 67:1 (1990), 177–193
Citation in format AMSBIB
\Bibitem{Lau89}
\by A.~P.~Laurincikas
\paper A limit theorem for the Riemann Zeta-function close to the critical line.~II
\jour Math. USSR-Sb.
\yr 1990
\vol 67
\issue 1
\pages 177--193
\mathnet{http://mi.mathnet.ru//eng/sm1631}
\crossref{https://doi.org/10.1070/SM1990v067n01ABEH002086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1015037}
\zmath{https://zbmath.org/?q=an:0703.11037|0685.10029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990ED88000011}
Linking options:
  • https://www.mathnet.ru/eng/sm1631
  • https://doi.org/10.1070/SM1990v067n01ABEH002086
  • https://www.mathnet.ru/eng/sm/v180/i6/p733
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:362
    Russian version PDF:106
    English version PDF:15
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024