Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 2, Pages 349–366
DOI: https://doi.org/10.17323/1609-4514-2018-18-2-349-366
(Mi mmj675)
 

This article is cited in 5 scientific papers (total in 5 papers)

Joint value distribution theorems for the Riemann and Hurwitz zeta-functions

Antanas Laurinčikas

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
Full-text PDF Citations (5)
References:
Abstract: In the paper, a class of functions $\varphi(t)$ is introduced such that a given pair of analytic functions is approximated simultaneously by shifts $\zeta(s+i\varphi(k)),\zeta(s+i\varphi(k),\alpha)$, $k\in\mathbb N$, of the Riemann and Hurwitz zeta-functions with parameter $\alpha$ for which the set $\{(\log p\colon p\ \text{is prime}),\ (\log(m+\alpha)\colon m\in\mathbb N_0)\}$ is linearly independent over $\mathbb Q$. The definition of this class includes an estimate for $\varphi(t)$ and $\varphi'(t)$ as well as uniform distribution modulo 1 of the sequence $\{a\varphi(k)\colon k\in\mathbb N\}$, $a\neq0$.
Key words and phrases: Hurwitz zeta-function, Riemann zeta-function, uniform distribution modulo 1, universality, weak convergence.
Bibliographic databases:
Document Type: Article
MSC: 11M06, 11M35
Language: English
Citation: Antanas Laurinčikas, “Joint value distribution theorems for the Riemann and Hurwitz zeta-functions”, Mosc. Math. J., 18:2 (2018), 349–366
Citation in format AMSBIB
\Bibitem{Lau18}
\by Antanas~Laurin{\v{c}}ikas
\paper Joint value distribution theorems for the Riemann and Hurwitz zeta-functions
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 2
\pages 349--366
\mathnet{http://mi.mathnet.ru/mmj675}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-2-349-366}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439059900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049017815}
Linking options:
  • https://www.mathnet.ru/eng/mmj675
  • https://www.mathnet.ru/eng/mmj/v18/i2/p349
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024