Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2008, Volume 49, Number 4, Pages 768–785 (Mi smj1876)  

This article is cited in 2 scientific papers (total in 2 papers)

Discrete universality of the $L$-functions of elliptic curves

V. Garbaliauskienėa, J. Genysa, A. Laurinčikasab

a Faculty of Mathematics and Informatics, Šiauliai University
b Department of Mathematical Computer Science, Vilnius University
Full-text PDF (362 kB) Citations (2)
References:
Abstract: A discrete universality theorem is obtained in the Voronin sense for the $L$-functions of elliptic curves. We use the difference of an arithmetical progression $h>0$ such that $\exp\{\frac{2\pi k}h\}$ is rational for some $k\ne0$. A limit theorem in the space of analytic functions plays a crucial role in the proof.
Keywords: elliptic curve, $L$-function, limit theorem, probability measure, random element, space of analytic functions, universality, weak convergence.
Received: 13.02.2007
English version:
Siberian Mathematical Journal, 2008, Volume 49, Issue 4, Pages 612–627
DOI: https://doi.org/10.1007/s11202-008-0058-0
Bibliographic databases:
UDC: 511
Language: Russian
Citation: V. Garbaliauskienė, J. Genys, A. Laurinčikas, “Discrete universality of the $L$-functions of elliptic curves”, Sibirsk. Mat. Zh., 49:4 (2008), 768–785; Siberian Math. J., 49:4 (2008), 612–627
Citation in format AMSBIB
\Bibitem{GarGenLau08}
\by V.~Garbaliauskien{\.e}, J.~Genys, A.~Laurin{\v{c}}ikas
\paper Discrete universality of the $L$-functions of elliptic curves
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 4
\pages 768--785
\mathnet{http://mi.mathnet.ru/smj1876}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2456689}
\zmath{https://zbmath.org/?q=an:1164.11024}
\elib{https://elibrary.ru/item.asp?id=10429005}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 4
\pages 612--627
\crossref{https://doi.org/10.1007/s11202-008-0058-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258913200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51649096433}
Linking options:
  • https://www.mathnet.ru/eng/smj1876
  • https://www.mathnet.ru/eng/smj/v49/i4/p768
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :69
    References:40
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024