Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 11, Pages 1599–1619
DOI: https://doi.org/10.1070/SM2014v205n11ABEH004430
(Mi sm8371)
 

This article is cited in 3 scientific papers (total in 3 papers)

Joint discrete universality of Hurwitz zeta functions

A. Laurinčikas

Vilnius University
References:
Abstract: We obtain a joint discrete universality theorem for Hurwitz zeta functions. Here the parameters of zeta functions and the step of shifts of these functions approximating a given family of analytic functions are connected by some condition of linear independence. Nesterenko's theorem gives an example satisfying this condition. The universality theorem is applied to estimate the number of zeros of a linear combination of Hurwitz zeta functions.
Bibliography: 20 titles.
Keywords: algebraic independence, Hurwitz zeta function, linear independence, limit theorem, space of analytic functions, joint universality.
Received: 31.03.2014 and 27.06.2014
Bibliographic databases:
Document Type: Article
UDC: 511.331
MSC: 11M35
Language: English
Original paper language: Russian
Citation: A. Laurinčikas, “Joint discrete universality of Hurwitz zeta functions”, Sb. Math., 205:11 (2014), 1599–1619
Citation in format AMSBIB
\Bibitem{Lau14}
\by A.~Laurin{\v{c}}ikas
\paper Joint discrete universality of Hurwitz zeta functions
\jour Sb. Math.
\yr 2014
\vol 205
\issue 11
\pages 1599--1619
\mathnet{http://mi.mathnet.ru//eng/sm8371}
\crossref{https://doi.org/10.1070/SM2014v205n11ABEH004430}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408641}
\zmath{https://zbmath.org/?q=an:06417739}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1599L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348594700003}
\elib{https://elibrary.ru/item.asp?id=22834493}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921781840}
Linking options:
  • https://www.mathnet.ru/eng/sm8371
  • https://doi.org/10.1070/SM2014v205n11ABEH004430
  • https://www.mathnet.ru/eng/sm/v205/i11/p75
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:572
    Russian version PDF:150
    English version PDF:12
    References:50
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024